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PREFACE

The aim of this special course was to present the current state of knowledge on three-dimensional boundary layer
computations. The emphasis was placed on turbulent boundary layers which develop on wings or fuselages including
separation.

Introductory lectures presented basic information about the fundamental equations, boundary and initial conditions,
coordinate systems, integral and differential methods, turbulence models, and interactive procedures.

The discussion of experimental aspects of three-dimensional boundary layers was directed towards the use of
fundamental experiments to improve models for turbulence and for transition.

A review of various calculation methods was given: it included the presentation of available techniques for calculating
transition and the discussion of turbulence models. In addition, a few lectures were devoted to the evaluation of results of
boundary layer calculations with regard to design aerodynamics, in particular when boundary layer separation is involved.

An important part of the course was reserved for viscous-inviscid interactive schemes. The numerical procedures were
described in detail and applications were presented.

Finally, the calculation of corner and tip region flows was discussed.
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THREE-DIMENSIONAL BOUNDARY LAYERS.
INTRODUCTION TO CALCULATION METHODS

Jean COUSTEIX

Office National d Etudes et de Recherches Aérospatiales
Centre d Etudes et de Recherches de TOULOUSE
Département d'aérothermodynamique
2 avenue Edouard Belin - 31055 TOULOUSE Cedex (FRANCE)

SUMMARY

This paper gives an outline of problems encountered when faced with the calculation
of three~-dimensional boundary layers. The various topics which are discussed are :
geometry of axis-systems, boundary layer equations, global equations, nature of the
system of equations, integral methods, singularities in boundary layer calculations,
numerical techniques, turbulence modelling. —

The classification of flows into mono-, two- and three-dimensional flows is clear
as far as laminar flows are considered. In a turbulent flow, the definitions need to be
completed because turbulence is always three-dimensional. As it is usual to do in most
analyses, any characteristic of a turbulent flow is decomposed into a mean quantity and
a fluctuating quantity. So, the classification into mono-, two- and three-dimensional
flows refers to the nature of the mean flow.

For convenience, three-dimensional flows may be classified into three categories
according to the number of main directions of diffusion :

1) Thin shear layers in which the {mean}) momentum is diffused in a preferred
direction.

2) Slender shear flows in which a main flow <can be defined along which the
diffusion is negligible.

3) Full three-dimensional flow.

Let us notice that the word “diffusion” 1is wused to denote a process due to
viscosity or to turbulence.

For categories 1) and 2), a main flow direction can be defined and the flow 1lvying
in a plane normal to the main direction is called secondary flow.

The archetype of the first category is the boundary layer flow developing on a wing
at low incidence. The diffusion takes place along the normals.to the wall. This kind of

flow . is associated with simplifications of the basic equations. In a first
approximation, let us say that the equations are the extension of the <classical two-
dimensional boundary layer equations : the normal pressure gragdient is 2zero and the

components of the pressure gradient parallel to the surface are known.

The second category of three-dimensional flows is represented by the flow in the
neighborhood of the corners of a square duct or by the flow near the junction of a wing
and of a fuselage. Another example is the development of a longitudinal vortex imbedded
in a boundary layer. These flows are associated with another kind of simplification of
the basic equations. Roughly speaking, the diffusion in the main flow direction is
neglected and the streamwise component of pressure gradient is known.

The third catégory of flows is governed by the full NAVIER-STOKES equations. No
particular’ approximations can be applied.

The first two categories of three-dimensional flows are characterized by the
formation of secondary flows which are associated with the formation of -longitudinal
vorticity. The sources of this vorticity are determined by a few basic mechanisms.

The first source of secondary flows can be explained from purely inviscid
considerations. In a three-dimensional inviscid ({or viscous) flow, a 1longitudinal
vorticity can be induced by the skewing of an existing lateral vorticity component or by
the interaction between the velocity field and the- vorticity field. The corresponding
secondary flows are called secondary flows of the first kind, following the PRANDTL
nomenclature. A second possible mechanism is purely turbulent a mean longitudinal
v9rticity can be induced by correlations between the fluctuating velocity and vorticity
fields because of the non linearity of the basic equations. These secondary flows are
c§lled secondary flows of the second kind. Finally, the third mechanism is associated
with wall boundary conditions and can occur in a laminar or in a turbulent flow in
both cases, the no-slip condition at the wall applies so that a lateral motion of the
wall leads to a cross flow : this is what happens in a flow over a spinning body {see
for example the experiments of FULACHIER et al, 1982).



1-2

In fact, it is often very difficult to separate the various origins of three-
dimensionality in a given flow. For example, on a swept wing, we will see that the three-
dimensionality in the outer part of the boundary layer can be explained by the first
mechanism but, near the wall, it is clear that the no-slip <condition inforces the
secondary flow to be zero. Therefore, near the wall, the third mechanism is involved.

A fourth source of secondary flow, as mentioned by BRAOSHAW, 1986, is the formation
of streamwise vorticity due to an instability process. In fact, several types of
instability can develop. This is for example the formation of TAYLOR-GORTLER vortices in
laminar or turbulent flows on a longitudinally curved wall, Another form of instability
leading to streamwise vorticity occurs in a laminar three-dimensional boundary layer
which develops onh a swept wing for example. This instability comes from the development
of crossflow in the laminar boundary layer and participates in the process of laminar-
turbulent transition. Finally, let us mention the very interesting recent results
obtained in the study of a three-dimensional boundary layer generated by a discontinuity
in the wall velocity (FULACHIER et al, 1982) : a turbulent boundary layer develops on an
axial circular cylinder whose forward part is stationary and rearward part rotates
around the axis. Downstream of the discontinuity, visualizations in a water tunnel have
shown very regular longitudinal structures which become more random as the boundary
layer develops and restructures (COLLINI-FULACHIER, 1986).

1 -2 NARY MARKS

As it is usual in most analyses of turbulent flows, any characteristic of the flow
is decomposed into a mean gquantity and a fluctuating l(or turbulent} aquantity. For the
sake of generality, it is convenient to define a mean value as an ensemble average
this is a statistical average determined from a sampling of instantaneous values taken
over a large number of independent realizations of the same flow., In this way, the case
of unsteady turbulent flows 1s not excluded from the study .: the flow is unsteady if “the
ensemble averages are time-dependent.

If the flow is incompressible (g = cst), the mean velocity and the mean pressure
are defined as

£ u;n)
ul = Ui + u H U.l = h&m
(n)
B . L
p= P +p H P o= dim 3
where u. and p are the instantaneous Ya%ues, Ui and P are the mean values, ui and p'
are the fluctuations. U’-_n and p n are samples determined from independent
realizations of the same flow.

' In the case of a compressible flow,, a mass-weighted average 1is often used as

recommended by FAVRE (see for example FAVRE et al, 1976).

B 1.1. Mean flow

The general effect of turbulence on the mean flow is to smooth out the variation of

mean momentum or of temperature because turbulence acts as a good mixer. In a boundary
layer, it follows that the mean velocity profile is fuller than in the case of a laminar
flow because the velocity is close to the external velocity. Indeed, it is known that

the velocity defect Ug - U between the external velocity and the boundary layer velocity
decreases as the REYNOLDS number increases. Obviously, the no-slip condition at the wall
remains valid and it results that the slope of the mean velocity profile at the wall 1is
larger than in laminar flow. Therefore, the skin friction coefficient 1is larger 1in
turbulent flow. In the same way, the heat exchange coefficient at the wall is larger in
turbulent flow.

Another consequence is that the mean kinetic energy 1is 1larger and a turbulent
boundary layer is able to sustain a much 1larger adverse pressure gradient without
separation than a laminar boundary layer.

The basic equations describing a turbulent flow are the NAVIER-STOKES equations.

Indeed, it is generally accepted that the NAVIER-STOKES equations are valid for
describing the instantaneous flow because the smaller turbulent length scales and time
scales are very different from the molecular scales, This means that the entire
turbulent motion can be considered as the flow of a continuum. Then, in the case of an
incompressible flow, the mean flow equations are derived by taking the average of the
continuity equation and of the NAVIER-STOKES equations. In a cartesian axis system, the
mean flow equations are (for an incompressible flow) :

U,
L

{1.3) Y
axi

= 0
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oYy duy duy 2P )
e Bt 93t ' °Y5ax, T T o, Bk (PMSiy e <uiuy)
J 1 J
Sij is the rate of strain tensor
1 aui auj
(1.8 Sijﬁ[ﬁ*m]
J i
and 2uSij is the viscous stress tensor.
The quantity - p <uiu5> involves the average of the product of velocity
fluctuations ; it is called thé REYNOLDS stress tensor. Because of 1it, the mean flow

equations do not form a closed set of equations as the number of unknowns is larger than
the number of equations. The equations and hypotheses which are developed to close this
system are called the closure assumptions.

The origin of the REYNOLDS stresses lies in the non 1linearity of the convection

term. In incompressible flow, the NAVIER-STOKES equations for the instantaneous flow can
be written in a vectorial form as : —

(1.6) J d l v (* ) d ’ t d
AR . =

. p @ B¢ 97 g ev (vn o s [}

where the components of the vector t are

ti = (-~ p Gil + 2“511) ny
. 1 aui . aul
i1 " 2 Ox O,
1 i
where ny are the components of the outer normal to the surface S bounding the volume D.

Taking the average of (1.6}, we get :

-
oV - b -, -+, -
(1.7) JD e 3% dt + JS gV (vn) do + IS o] <v- (v'n)> do = JS T do
The i-component of the turbulent term can be written :

JS e (uiul> nldo
which shows that the REYNOLDS stresses are due to a flux of momentum. From the momentum
theorem, this term can be put in the right member of (1.7) as this is done in eq. (1.4)
and interpreted as an apparent turbulent stress having the same modulus but the opposite
direction as the flux of momentum.

Another interpretation of this term is given by TENNEKES-LUMLEY, 1972, who write
the equation (1.4) as :

* 2

oV -
(1.8) e 3¢ * 208XV + o grad %— = - gradP - 2p WXV - p grad 2 2 uav
with §=1/2 curl ¥

%' = 1/2 curl V'
Generally, the turbulent kinetic energy :
. - <V.2> ~ <uiui>
- 2 - 2

is small compared with the kinetic energy of the mean motion so that the contribution of
turbulence in eq. (1.8) occurs mainly as an apparent volume force - 29<6' X V' > due

to the interaction between the fluctuation of the velocity field and of the vorticity
field. Indeed this is a very important property of a turbulent flow to have very strong
vorticity fluctuations.

The turbulent shear stresses are also present in the equation for the mean flow
vorticity. For an incompressible flow, this equation is

39, 39, a2 3
i i i <] ijk @

(1.9) + U == = Qs —i— - o | LIX G ey

at 1 axl 1°i1 Y Y Bx ox ox [ 2 A <ukul>

1771 1 3 )

where €3k %s ?he permutation tensor (ei'k = 1 if i, j, k are in cyclic order ;
ik © - 1V if 1, j, k are not in cyclic drder ; e€.., = 0 if two or three indices are
equal) i3k

As In the case of an inviscid flow, the interaction between the velocity field and
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the vorticity field (term le~ ) can be a source of vorticity. Let us remind that this
is possible only in a three-dimensional flow : in a two-dimensional inviscid flow, the
vorticity is constant. Vorticity can be generated (or destroyed) by a vortex stretching
(or squeezing) mechanism : in the Qx-equation. for example, the corresponding term is

Q dU/dx. If dU/Ox » O, there is a production of Qx. tet us remind that, in inviscid
flow, a vortex surface or a vortex tube are also a stream surface Or a stream tube ; a
fluid particle belonging to the vortex surface or the vortex tube is displaced along the

same vortex surface or vortex tube. Then, if dU/dx > 0, a vortex tube aligned with the x-

axis is stretched. If dU/3% < D, there is a destruction of Qx i a wvortex tube aligned
with the x-axis is compressed, Another mechanism of vorticity generation is the vortex
tilting : in the Qx-equation, the corresponding terms are

1 oy vV 1 v oW . . - . . .
Qy > [ 3y + Bx ] + Qz 2 [ 32 + By ]. This term is responsible for longitudinal vorticity

production in the outer part of a three-dimensional boundary layer. Let us consider a
boundary layer which is initially two-dimensional and let us assume that the streamlines
are forced to incurve in a plane parallel to the surface (under the action of a pressure

gradient). The flow cannot remain two-dimensional (fig. 1.1). In the initial ©boundary
layer, the velocity gradient dU/dy leads to a z-vorticity component. If there was no
vorticity production, this vorticity vector would be simply conserved (o@/0t = 0) but

the rotation of streamlines implies the existence of a OW/3x term which interacts with
dU/dy to create a x-vorticity component. For a small turning o of the streamlines with
respect to the x-axis, the vorticity vector turns by an angle - & with respect to the x-
axis. Then the rotation of the vorticity vector with respect to the streamlines is - 2 a
: this result is known as the SQUIRE-WINTER formula. In a boundary layer, the crossflow
is zero at the outer edge and the sign of the induced longitudinal vorticity implies the
creation of a secondary flow directed towards the inner side of the <curvature of the
external streamlines (fig. 1.1}, ’

Obviously, the no-slip condition at the wall inforces the secondary flow to be zero
at the wall and the velocity gradient component dW/3dy changes sign near the wall.

Fig. 1.1 - Generation of crossflow in a boundary layer

Another explanation of the formation of a <crossflow in a boundary layer is as
follows. The curvature of the external streamlines is due to a crosswise pressure force
directed towards the inner side of the curvature. In a boundary layer, the normal
pressure derivative dP/3y is =zero and therefore, the <crosswise pressure force is
constant within the boundary layer. Oue to the smaller velocity in the boundary layer,
the inertia is smaller and the fluid particles tend to move towards the inner side of
the curvature of the external streamlines. When the external streamlines have an
inflexion point, the crossflow reverses but the change of sign does not occur at the
same time in the whole boundary layer. The crossflow changes sign near the wall at
first, because the inertia is smaller in this region. Then, S-shaped crossflow velocity
profiles can be observed,

The vorticity equation (1,8) also shows that the turbulence stresses can be a
source of vorticity. More precisely, the gradient of the REYNOLDS stress tensor «can be
responsible for vorticity flux. If equation (1.9) is integrated over a volume O and if
the gradient of the REYNOLDS stress tensor is zero on the surface bounding D, it appears
that the turbulence term contributes to transport vorticity from one point to another
point inside O without global production or destruction. There can be concentration of
positive vorticity in certain zones and, by compensation, concentration of negative
vorticity in other zones.

In the Qx—equation for example, the turbulence term is

2 2 2 2 2 2
1 3 - 3 - 3 .2 8 2, B co 3 ]
7z [— 3;5; <wu > + B20% <V u > - 3yoz <w' >+ 3yoz <V 3;3 <wiv'> 4+ azz <viw >

This expression shows that there is no effect of turbulence on the mean vorticity
if turbulence is isotropic.



1.2. General background of classical turbulence modelling

Ih eq. (1.4), the apparent turbulent stress is combined with the viscous stress and
contributes to the diffusion of mean momentum. This analogy 1s often advocated to
introduce the concept of eddy viscosity to express the REYNOLDS stresses as a function
of the mean velocity gradient in the same way as the viscous stresses ; the reasoning 1is
based on a hypothetical resemblance between the molecular motion and the turbulent
motion and it leads to the mixing length scheme. In fact, it is better to introduce
these concepts as resulting from a dimensional necessity (TENNEKES-LUMLEY, 1872). Let us
consider a shear flow in which the velocity gradient has a predominant component, let us
say 0U/Oy. On the other hand, it is assumed that the energy-containing eddies can be
characterized by a velocity scale u and a length scale 1. The mixing 1length hypothesis
consists of assuming that the mean flow imposes its time scale to the turbulent flow and
we get

Q

U
Yy

Q|

u
1

The mixing length model is deduced by assuming a good <correlation between the
fluctuations u' and v'.

Let us notice that the analogy between the viscous stresses and the apparent
turbulent stresses is unfortunate because the viscosity is a property —of the fluid
whereas the turbulence is a property of the flow in the sense that the viscosity exists
even 1f the fluid is at rest whereas turbulence disappears if the fluid is at rest.
However, this does not mean that the turbulence is independent of the fluid properties.
In particular, another important characteristic of turbulence is the dissipation process
which is directly connected to the viscosity. From the comparison between the kinetic
energy equation and the enthalpy equation, it is shown that the work performed by the
viscous stresses transforms the kinetic energy into heat. In compressible flows, these
equations written for the instantaneous flow read :

du.
a9 YiYy 8 YiYi i d
t1.10a) @ 3F Ta YR UyEe Tz fPax. T (tigYi) T M9
J 1 J
dh dh  _ _d A 8h 9p <)
(1.10b) ° 3¢t @Yy xj’axi[c;, axl] M TSR I v L
where tij = - pﬁij + 2usij - 2/3 y (auilaxi) ﬁij
and g is the dissipation function :
du,
. S22 iy ]
®p [zsij 3 Bx, Sijd Sij

1

From equations {(1.1Da) and (1.1D0b), it is clear that the work e, of the viscous
stresses represents an exchange between kinetic energy and heat. In addition, ®p is
always positive because :

2
(1.11) ¢D=[g—;+g_:’(]2+ %42_3]2., %*2_2]2“%[[%_2_;]
SRS SRR 2% i

In the case of an incompressible flow, we have :

Wp = 2 S$j485
The average value of the total kinetic enrgy is :
<u.u.> u.u, <ulul>
i°i i"i ii

K + k = 5 ] 2 + 5

The dissipation rate of the kinetic energy K of the mean flow (for a unit mass) is

(1.12) D = 2v Sijsij

and the dissipation rate of the turbulent kinetic energy k (for a unit mass) is

(1.13) € 2v <s:

1jsij>

This dissipation € comes from the work performed by the fluctuations of viscous
stresses. When the REYNOLDS number is large, as required to have a fully developed
turbulence, € is much larger than 0D.

The dissipation € plays a central role in the classical description of turbulence
which can be summarized as follows. Let wus consider a shear flow with a dominant
velocity gradient component dU/dy. The source of turbulence is the shear 0U/dy which
imposes its time scale to the energy-containing eddies.
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By considering the equations for the kinetic energy of the turbulent motion and of
the mean motion, it is shown that an exchange of energy takes place between the
turbulent and the mean flow at a rate -~ <u'v’> 8U/dy ; generally, this term contributes
to a production of turbulent kinetic energy and therefore to a destruction of mean
kinetic energy. If the REYNOLDS number wul/v, characterizing the energy-containing
eddies, is large enough, an inviscid process takes place in which the turbulent eddies
form smaller and smaller eddies in connection with a vortex stretching mechanism. This
process continues until the REYNOLDS number characterizing the smaller eddies is of
order unity : the viscosity becomes effective and the energy is transformed into heat by
the viscous dissipation. The scales of these dissipative eddies are obtained from a
dimensional consideration of (1.13). If T is the characteristic time scale of the
fluctuation sij responsible for the dissipation, we have :

(1.14) . “"v—z
T

Qn _the. other. hand, if n and v are characteristic length and velocity of
the dissipation eddies, the hypothesis that their characteristic REYNOLOS number is of
order unity gives

v1.15) L1 G
v

Finally the relationship between scales
{1.16) v o= LTl
leads to the KOLMOGOROV scales which characterize the dissipative eddies

(1.17) n = [ %i ]1/4 v = (sv)‘/‘ T = [ % ]1/2

These scales are related to those characterizing the energy-containing eddies. To
show this, let us consider the fully developed flow in a pipe (FAVRE et al, 1972). The
equations of the flow show that the dissipation rate of (K + k) averaged over the pipe
section is :

et
(1.18) D A R

where A is the pressure drop coefficient, U the velocity averaged over the pipe section
and R is the pipe radius. As said before, if the REYNOLOS number is 1large enough, the
dissipation rate D is nearly equal to the average of & over the pipe section.

In the case of a smooth wall, A varies as ('UR/V)"”A and in the case of a fully
rough wall, A is independent of the REYNOLDS number. Let us notice that in the case of
the smooth wall, the viscous stresses are larger than the REYNOLDS stresses in a thin
layer near the wall ; therefore, the flow is not fully turbulent over the entire «cross
section of the pipe. On the contrary, in the case of the fully rough wall, the flow can
be considered as fully turbulent everywhere. Then, it appears that in a fully turbulent
flow, the non dimensional dissipation rate is independent of the REYNOLDS number and, in
particular, of the viscosity v, The problem is that, from its definition (1.13), € |is
apparently proportional to v. :

The solution to solve this paradox is to assume that the dissipative rate is

determined from the characteristic scales u and 1 of the energy-containing eddies. From
a dimensional analysis, it results the following crucial relationship :

(1.19}) e =

[
w

In fact, the consideration of the spectral energy equation leads to assume that the
dissipation rate € is nearly equal to the rate of energy transfer from the large to the
small eddies. As this process does not involve the viscosity, the relationship (1.19)
seems natural.

The comparison between (1.14) and {(1.19) shows that the dissipative eddies have to
adjust their time scale v in order that ¢ is independent of v. Precisely, T is
proportional to v . )

Using (1.19), the ratios of scales characterizing the energy-containing eddies (u,
1, 8) and the dissipative eddies (u, n, T) are :

1.20 v g1/ no_ o374 I._ p-1/2 =
{ . u Rl 1 Rl 8 R1
with R, = 4l

1 v
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These expressions show that the gap between the two families of eddies increases as
the REYNOLDS number R, increases ; the structure of the dissipative eddies becomes
independent of the structure of the large eddies at high REYNOLDS number. In addition,
these formulae describe the adaptation of the flow structure to the REYNOLDS number so
that the viscosity can be effective. Indeed this is a very general property of the
viscosity which is such that the flow structure adjusts in such a way that the viscosity
is always effective in a part of the flow (TENNEKES-LUMLEY). Let us consider a flow with
a velocity U around an obstacle with a characteristic length L. When the REYNOLDS number
UL/v is of order unity (STOKES flow), the viscosity is effective in a domain the size of
which is L. When the REYNOLDS number increases, a laminar boundary layer of thickness &
forms along the walls of the obstacle and the viscosity is effective in this boundary
layer which is characterized by the REYNOLDS number U&/v (Ra << RL) i this 1is a first
adaptation of the flow. If the REYNOLDS number Ra increases, it 1is more and more
difficult for the viscosity to be effective in the 1laminar boundary layer since the
REYNOLDS number is the ratio of the orders of magnitude between the inertia effects and
viscosity effects. A turbulent boundary layer forms and the viscosity becomes effective
in the small dissipative eddies characterized by a REYNOLDS number un/v of order unity.
When the REYNOLDS number UL/v increases, we see that there is a continuous adjustment of
the small eddies. ’

2 - GEOMETRY OF BOUNDARY LAYER AXIS S

The boundary layer equations are written in a curvilinear axis system formed from
two families of lines drawn on the surface along which the boundary layer develops.
Before writing the equations, it could be useful to remind a few geometrical definitions
and properties.

2.1. Geometrigcal definitions
Let us consider a curve (F) drawn on the surface (S). E,, Ez, Ea are unit
vectors and define the FRENET reference system. 21 is tangent to (T) ; Ez is along the
normal to (F) Ea is orthogonal to §1 and Ez. If s is the length along (), we have .
[5 [
(2.1a) ek R
- 18 ds R
df 3 [
2 1 3
(2.1b) rT SR
[3 [
(2.1c) bk T 1
e ds T

where 1/R is the curvature of (F) and 1/T is the torsion of (F).

S - planr. ta!\agr\t'
(A Ry & ta (s)

Pig. 2.2 - Definitions
Pig. 2.1 - Reference system

The base vectors (E1, Eé, B,) are associated with the curve (F). We now define a
second system (G,, [} . Ga) assoclated with the curve (F) and the surface (S). 61 is
a unit vector tangent to (F) ; Gz is normal to G, in the plane tangent to (S) H 33 is

normal to (S). We have the following relationships :

- - -+
dG1 62 G3
(2.2a) 5 EE *
dé g [
2 1 3
{2.2b) T == + To
BY: 4 [
({2.2c) _3 __ 2__2
ds Rn Tg
where 1/Rg = sin8/R is the geodesic curvature ; 1/Rn = cos8/R is the normal curvature g

1/T9 = 1/T + d8/ds is the geodesic torsion (fig. 2.2).
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2.2, ur iented call onoclinic coordipate

The boundary layer equations are conveniently written in an axis system formed by
two families of curves drawn on the surface. These curves are not necessarily
orthogonal. The system is completed with a third axis which is normal to the surface.

The theory of such axis systems has been presented by HIRSCHEL-KORDULLA, 1981.

In figure 2.3, a surface oriented locally monoclinic coordinate system is depicted.

6,; A gz P

Fig. 2.3 - Definition of surface-oriented locally monoclinic coordinates

: -
The vectors ;i are covariant base vectors : 31 and a, are tangent to the surface

agd are not necessarily unit vectors ; 33 is a unit vector normal to the surface. x',
®%, % are the associateqd contravariant coordinates. A cartesian system is defined with
€, as unit vectors and El are the associated coordinates.

1

Let us notice that the base vectors 31 and 32 are known at point Pg belonging to
the surface (S) and not elsewhere. We have :

{z2.31 . T o= X3, = el «a=1,2 i=1,2,3
where the subscript S denotes the ‘point Pg (fig. 2.3).

The base vectors 31 and 32 are such as :

1 2 3

- 3T 8%s . o8 Bt

(2:4) A T e Ta 1t T a2t = €3
ox 3% Ox Ox

The position of a point P off the surface S is given by :

N

(2.5} R = Elzi = ;(x1, xz) +.x3;3(x1, x2)
The vector 33 is such as :
-+ i
(2.8) 3, - 933 : 955 Z
Ox Ox

Local base vectors 3j can be associated with the coordinates x:j g

- _ i+ ; g
(2.7} . R = E € X g:i
The base vectors 3j are such as :
- i
(2.8) 3. = 957 = 95? ;i'
I axd ax?
From equations (2,5) and (2.4), we have :
- -
-+ fod da da
(2.8a) a—R&-zer * 3._.3:-3’ + xa—% a =1, 2
3% ax® ax® @ Ox
-
oR -+
(2.9b —_— =
U 3 23

3%



Then, from (2.8) and (2.9), we get :

-
3 = ; + x3 3:3 a = 1 or 2
(2.10a) gu S axu i
-+ -
(2.10b) 93 = 4y
-
. -+ . -+ - -+ aa3 1 o - -+
Noting that a_, is normal to a, and a, and that a, ——— = — ——(a_a,) = 0, the
3 1 2 3 o 2 a 3 3
Ox Bx
relationships (2.10) show that the metric tensor Qij - si§j takes the form :
[ 914 912 0
(2.11) 95~ 9,4 S,, 0
- 0 0 1

On the surface S8, this metric tensor reduces to :

r-a11 312 0
(2.12) Egij]X3=0 = 321 822 0
- 0 0 1
with : - .
(2.13) auﬂ = auaﬂ (o = ¥ or 2} ; B = 1 or 2)

From {2.4), these coefficients are given by :
1 1 2 2 3 3
aas OES . BES BES . OES aas

{2.14) a =
W an® axP  ax® axP  ax® ax®

Let us consider an element of curve given by :
{2.15) af = axIg,

The length ds of this element is given by :
(2.16) (0512 = g, tax12Z + 29, dx'dx? + g,,(axZ12 « (ax?)?
If the curve is drawn on the surface, its length is :

(2.17) {ds)? = a“(dx1)2 + 2a4, dxtdx? + azz(dxz)2

2.3. Application to boundarv laver eguations

Generally, the tensorial notation is not wused in 1literature on boundary
theory.

The axis system is defined by X = cst- and Z = cst-lines drawn on the surface

which the boundary layer develops (fig. 2.4). The y-axis is nofmal to the wall.
=

Fig. 2.4 - Non orthogonal axis system
hadZ - ‘“‘“‘*%
h.dX

The metric elements h,; and h, are related to the coefficients aup
previously {eq. 2.13) :

(2.18) h1 = Ja 1 h2 = Ja 2 -
The metric element h3 along y is unity :
(2.19) hg = 1

The coefficient g is defined as

(2.20) g = hyh, cosA (g = a,;,)

layer

along

defined



According to the boundary layer assumptions, the thickness & of the boundary layer

is small compared with the radii of curvature of the surface. It results that the
variations of the metric tensor 935 within the boundary layer can be neglected ; this
means we can take Sag = 2gp: In otger words, hy and h, are functions of X and Z only
(2.21a) hy = hy(X, zZ) hy = hyiX, Z)

In the same way, we have :
(2.21b) A = AIX, Z)

The metric coefficients are given by (2.14)

S B N e
(2.22a) hy = Lax + DX * X
[ (=] [T
2 _ s s s 7
(2.22b) h, = L3z + z * L3z B
1 1 2 .. 2 3 3
) aas aas N aES aES . aES aas
(2.22c) 9 % 3% 3z ax 9z X 0z

where Eé are the cartesian coordinates of a point PS on (S).

The length of any element of curve is :

(2.23) ds? = hZdx? + 2gdxdz + hZdz? + dy?

In the boundary layer equations, the geodesic curvatures K1 and K2 of the X- and 2Z-
axes are present. The geometrical meaning of the geodesic curvature has been presented

in § 2.1.. From (2.2}, (2.4) and (2.13), the values of K1 and K, can be calculated as a
function of auB or as a function of hys hy and A :

1 [ d 8h,
(2.24a) K1 = E:F;;I;X % (hZCOSA) -
dh
- N N —2 ]
(2.24b) K2 = h1hzsinA 3z (h1cosA) %
3 - BOUNDARY LAYER EQUATIONS
3.1, uations in curvilinear axis syste

* The boundary layer equations are written in a non orthogonal curvilinear axis
system defined in fig. 3.1. The X- and Z-axes form two families of curves drawn on the
surface and the y-axis is normal to the wall. A is the angle between the X- and Z-axes.
The metric elements along X and Z are h, and h2.

The physical velocity components along X-, Z-, y are respectively U, W, V.
The total enthalpy hy is related to the static enthalpy by :

2 2
(3.1) h = p 4+ Ut W + 2UWcosA

i 2

Let us notice that the contribution of the velocity component v is neglected in the
boundary layer approximation.

Ve
Sz |
X,U

J a———

Y.y

Fig. 3.1 - Boundary layer axis system
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In compressible flow, the mass-weighted averages are equivalent to the classical
average if the MACH number is not too large. In addition, we neglect the correlations
between the fluctuations of density and velocity. The boundary layer equations are :

%9 , 18 a_ 12 a_ 8 .
(3.23a) 3t * g ax [ eu h, ] * g 3z [ oW h ] * By oV 0
{3.2b) T L DU L VI AU c CieA RN 2 “2 w? + K, oUW

: ° 3t e h, X g h, 8z ev 3y sinA 1 sinh © 12°
dp oP -} ou Oes0
-a1—x-+azz+ay[uy-p<uv>]
oW U _ Bw W ouW ouW K1 2 COSA 2
(3.2¢) ©3t * ®h B T ®hy 8z ' %yt Tinx Y T M2 simn Ot KoM
14 14 <] 1%}
= b1 3% + b2 3z + By [ V] v - @ <w'v'> ]
oh 3h dh dh,

(3.2d) <] 3y

2
1 dh <) 00
[[ r i 1] V] 5; ] + 5; {eCpsv' T '>)
[- ECU'V'> U - <W'V'> W - p<u'VvV'> W cosA - p<w'Vv'> U cos A ]

K1 and K2 are the geodesic curvatures of the X- and Z-axes (eq. 2.24)., P is the
PRANDTL number.
The other coefficients are :

q = h;h, sinA

1 1 BA 1 3A
Kypg = 5ok L= 1Ky h, ax) * cosh (K, + ) 52! 1
1 1A 1 dA
Ky = 5nx L 1Ky h, Bz! * cosh (Ky ¢ h, 3%’
a1=-—‘—2;a2=—°95—"—2—;b1=ﬂ”‘—2—;b2=- ! -
h1sin A hzsin A hjsin A hzsin A

The wall boundary conditions are the no-slip condition : U =W = V = 0 (in the case
of an impermeable wall) s the wall temperature distribution or the heat flux
distribution is prescribed.

At the boundary layer edge, we have :
U = Ue W = we hi = hie

The external boundary conditions are such as :

du U du w_ au K
e e e e e cosA 2 2 2
EREL e 3t * e h1 ax_ T % h2 8z sink Kloeue * Sinh oewe * K12°euewe
TP 1.
- % 9x 2 3z
oW u_ oW w_ oW K
e e e e e 1 2 COSA 2
3.3b —_— —= = —_— - =2
. L % 3t * e h, ax " % h, 3z * sinn %Y 2 sinn %Me K21°euewe
dp aP
= by 3x * P23z
(3.3c) e ahie + E ahie + 0 E ahie = a—P- -
e ot e h, OX eh, 0z 3t

-
n

Let us remind that the normal pressure gradient 8P/dy is zero within the boundary
layer.

In steady flow, the outer condition simplifies as hje = cst.

The calculation methods are based on the solution of equations (3.2). However, this
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set of equations is not closed : the turbulent stresses - p<u‘v'>, - p<w'v’'> and the
turbulent heat flux - pCp<v‘T'> need to be represented by some turbulence model.

3.2, ]Integral eguations

Very often, practical calculations are performed by using global equations which
are an integrated form of equation (3.2) : the integration is performed between the wall
and the boundary layer edge. Such a set of equations is the basis of integral methods.
In fact, an infinity of global equations can be imagined : the most evident equations
are the integrated equations (3.2) but sometimes other equations are used, for example,
the global kinetic energy equation ; the momentum equations can also be multiplied by vy
before integration and we obtain moment of momentum global equations.

The most often used integral equations are the integrated forms of the continuity

and momentum equations. In the case of an unsteady compressible flow, these equations
are
(3.3a) 831_92,331_92,.1_92_!3___9_[ (5 - 5 )1
. u_ h X u h F3 u_ ot u p u_ dt e
e 1 e 2 e e

cf 19 Ye »
(3.3b) — Z BT (QeueA1) - 7 3t (9969)
p_u e u
e e e e
2 2
. 1 - 0gYed - eled o . A BUB . A, aUe
2 ax h 11 9z h 12 u h, 98X u h_ 8z
e uq 1 2 1 e 2
e e
U K W Y
COSA e 2 e e
T %y Sinn [u Byt 911] sink [u By + 922] LT [u By E’12]
e e e
Cf W
z 1 o) e 9
(3.3c) 5 = 2 3t (p ueAz) - 7 Bt (9369)
e_u e _u
e e e e
. 1 <] 2,ueq . - 2eUeq o A1 ouW A2 awe
ax h 21 8z h 22 u_h, 8x u h, Bz
. e u q 1 2 1 2
e e
W K U W
COSA e 1 e e
© K2 Sinn [‘LCAZ * 922] * Sina [ue By # 911] * K24 [ue By » E’21]

The global kinetic energy equation is used sometimes. Its expression 1is given by
SWAFFORD, 1983, for example.

The global energy equation is used when the wall heat flux is involved but its wuse
is limited to steady flows., In this case, this equation is :

(3.3d) fw 1 [g_ [Qeuehieq o ] L, & [Pe“e“ieq o ] ]
Qeuehie oeuehieq oX h1 it 0z h2 2t

The definition of the various global quantities is :

& : boundary layer thickness
Cfx } Twx ) CfZ . Twz
2 2 2 2
2ol e ue
)
e v, - ey aow-ow 69~9
= e e e e
A1 = o U dy : A2 = " dy 3 5 = dy
0 e e 0 2.Ye £ v} e -
) )
. _[ euth, hig! o . _J‘ gw(hi L oy
1t :
g 9euehie 2t 0 9eue ie
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J”’ U, - U) J"‘ oWlw, - W)
it R TR 7
Qe e Qe
® owiu, - u) % outu, - w
0,," dy i 8, = dy
o e u 0 e u

In the above equations, Twx and Tz are the wall shear stress components along X
and Z. Qw is the wall heat flux. Ug is the external resultant velocity which is related
to the X- and Z-components by :

2 = 2 2
e = Ug *» Wg + 2U W cosA

u e

3.3. Streamline coordinate system

The boundary layer equations are often written in a streamline coordinate system,
The x-axis is formed by the streamlines and the z-axis by the orthogonal- lines. Then,
equations (3.2) are slightly simplified since :
AN =wl2 i Wg = 0 ' Ug = Ug
In the streamline coordinate system, the velocity components are u and w and the
boundary layer characteristics are noted with small letters (&, 6, ...)

cF D _ CF, Tz
2 w2 ! 2 w2
Qe e Qe e
] ]
= _ ey . o P
5, J [1 1 day : 5, J S dv

0 1] e e

) )

[ Lo AL
8 = —— - 1] dy : = - —= - 1| dy
U 4] Qeue hie s 0 Qeue hie

5 u [ u] 5 w2
[:} = J —ou 1 - —] dy : 8 = I oW dy
11 0 %Y ug 22 5 s 02

e e

5 ew u 5 Quw
912=Jgu["Tde ; °z1’f’ 7 4y

o e e e o Qeue

The shape parameter of the streamwise velocity profile is :

The ratio of the wall shear stress components defines the angle Bo (or ﬁw)' between
the limiting wall streamline and the external streamline (fig. 3.2) :

dw
tang, = 1ﬁ3 = 3y = 1 A
L Au N2 Y
dy y=0

4

/ .
Ue Ww 2225 -
e\ :

\ , .
\ Fig. 3.2 - Velocity profiles in the

streamline coordinate system



3.4, Displacement thi ess - uivalent wall spiration velocit

The effect of the boundary layer on the external flow is determined with the help
of a matching condition between the boundary layer and the external flow. The boundary
layer is often represented by its displacement thickness or by the equivalent wall
transpiration velocity.

These concepts are introduced by defining a fictitious flow which is the extension
of the external flow within the boundary layer. Let v be the velocity normal to the
wall of this fictitious flow at any point y within the boundary 1layer. If the wall
curvature radii are large compared with the boundary layer thickness, the density and
the streamwise velocity of the extended flow are constant and equal to the edge boundary
layer values Qe and Ug. 0

The normal velocity vt is defined by a TAYLOR series expansion around y = §

x
(3.4) vViy) = v« ty - 8 [ %5— e

*
The term [ %%— ]y=6

fictitious flow and we get :

is expressed from the continuity equation written for the

*

v (y) v*(é) 1 aQe 1 :] Qeueq 1 -] Qeweq
u = "u -ty - %) o u. 8t ' o u.a dx h Y o.ugq a8z h
e e e e e e 1 e e 2

The matching between the boundary layer flow and the external flow is given by the
condition :

where Ve is the normal velocity at the boundary layer edge cglculated by the ©boundary
layer global continuity equation (3.3a). Then, the velocity v of the fictitious flow is

y e_u q e u q
vu( ) = 1u %; (Qeé . l %; [ ehe A1] v l %E [ ehe Az]
e Qe e e Qe eq 1 Qe eq 2
. [ 1% 1 8 [ %”eq] L1 3 [ e\, ]]
egu, Bt e u.a ax h1 e u.a az h2

The ratio v*ly]fue is the boundary condition which has to be prescribed to the
external inviscid flow at the distance vy from the wall in order to represent the
boundary layer effects. In principle, the distance y from the wall could be any wvalue
between y = 0 and vy = 6. In practice, the boundary condition of the external flow is
applied either along the displacement surface or at the wall.

In unsteady flow, we can define the displacement surface in such a way that at
every time, the inviscid flow 1is tangent to it. Following this definition, the

displacement thickness & and the velocity v (8 ) are given by :
U u_q W do
19 Q.Ye8 x e 13 <@gl * e * 3
q oX [ h e u_ A1 * q 92 h g u_ Az - 3t ot (Qeag) oL
1 e 2 e.
* x
vt (Ve r a8t Mes 2
u T u_ h, 83X u_ h, 8z
e e 1 e 2

In the case of a streamline coordinate system, this condition reads :

vis'y o et

u h_ dx
e 1

. . . * Lo . .
Let us notice that we could define a thickness A giving expressions which are more
symmetrical with respect to time and space

U [T | W ’
13 [ @oUed [ * e ]] 19 [ C.Ye * e ]] 1 -] *
—a— | =—— |oA7 = -2 .- £ 2 AT =2 - + 5= e ta” - 851]) =0
q ax n, u, 1 q 0z n, ug 2 o u, 3t e [
*x % *
voay 1ot Y 1 aat Mo 1 et
ug u, 8t ug h1 X u, h, 0z

The effect of the boundary layer can also be interpreted as a wall

J f ° Y transpiration
velocity : in this case, the velocity v is calculated at the wall (y = 0) and we have :

*
v_(9) 1 3 12 Cete ] 12 2eYef
YR . Il 2 (o A RO (s © O A 18 | hee”

u, e u, [ 3t 'Y Q) * 9 X [ h, ) q a8z [ h, AZ]]



4 - NATURE OF THE SYSTEM OF BOQUNDARY LAYER _EQUATIONS

The system of boundary layer equations will be analyzed in laminar flow only,
because the study of the turbulent case depends on the chosen model,

Before presenting the analysis of the three-dimensional equations, we will consider
a simple problem which depicts most of the properties of the boundary layer equations.

4.1, Analvysis of a simple problem

Let us consider the partial differential equation :

2

af af _ 2 3°f

(4.1) ﬁ'vax_a "_32
y

where a and V are constants.

We assume that this equation represents a certain phenomenon in an infinite medium
and we look for the response to a perturbation which represents a DIRAC distribution at
x =0, t =0,y = 0.

The new system of variables (X, Y, T) is introduced :

X = x - Vt Y = vy T = ¢t
In this new system, eq. (4.1i becomes
af _ 2 8%
aT ay2
and the solution to our above problem is : Y2
T2
§ = 1 3 4a”T

ZBJ T

Returning to the original variable, the solution is

L
1 432t for x = Vt 3 ~ o« <y < + =
(4.2) L e
2aIF€
f =0 for x # Vt § = o < y < + =

The solution {(4.2) shows that a perturbation introduced at a point (x, vy, t)
propagates immediately along the entire y-axis whereas the (x, t) plane is affected
along the line x = Vt ; the perturbation contaminates a semi-infinite plane (P) defined
by the y-axis and the line x = Vt (t » 0) (fig. 4.1).

. The propagation in the (x, t) plane is due to the convective nature of equation

{(4.1) (left hand side of 4.1) ; the propagation velocity is V since the perturbed domain
is characterized by x = Vt, g

. The propagation along the y-axis is due to the diffusive nature of equation (4.1)
{right hand side of 4.1) ; the propagation velocity along v 1is infinite because at a

small time t, the entire y-axis is affected by the perturbation. However, it should be
noticed that the perturbation is damped as t increases.

4 Fig. 4.1 - Domain influenced by a pertur- E Fig. 4.2 - Practical domain of
bation introduced at point x = 0 influence of a point
y=0t=20
t

o8 F>o501-

-

W ad 4dT

TVt ///,/”/

=X

The above analysis has defined the mathematical domain of influence of a point.
However the intensity of the perturbation is not the same everywhere. In certain regions
of the perturbed space, the value of f is very very small and, in practice, we c¢an say
that the regions are not perturbed. Then we can try to define the domain where the
perturbation is significant. Obviously the definition of “significant” will be
arbitrary. For example, we can decide that the perturbation is significant-if f > 0.001.
This leads to a “"practical domain” of influence which is finite as shown in figure 4.2.

The solution (4.2) also shows that the perturbation is amplified when time
decreases (t < 0). This means that the solution of (4.1) should be sought for increasing
values of t only.



h.2. a is bound ations

tet us consider a quasi linear system of partial differential equations

(6.3) AMIRCIESS i =
i Bx. B i=1,m
i
The number of coordinates is m ; F is a n-dimensional column vector i Aj are n x n

matrices and B is a n-dimensional columnh vector containing coefficients which depend

only on X; and F.

Tpe nature of the system (4.3) is studied by means of the characteristic
determinant

IAiAiI = 0
where Ai are the components of the vector normal to the characteristic surfaces.
We consider the laminar incompressible three-dimensional equations written in a
cartesian axis-system (in fact, the results of the analysis are the -same if the
equations are written in a general curvilinear axis-system).

The system is reduced to a quasi linear system by writing :

ay
) il 0
(4.4a) 5
A
.hb = W
(4 ) 3y
dy v AW _
(4.4c) 3% * By M 0
du ou ow 00 _ _ 1 93e
(6.t Usx *Vay *WaEZTVaEyt T g oax
aw oW ou -1 1 9r
(4.he) Uax+vay+waz—vry__g—-az
where p(X, 2) is a given function.
The characteristic determinant is :
2 ,5 _
(4.5) v Ay = 0

, According to the classical classification, the system is parabolic as all the
characteristic roots are real and identical. The characteristic planes are normal to the
surface. This property is associated with the diffusive nature of momentum equations
(second y-derivative in equations (4.%4a) and (4.4e)) and with the term dV/dy in the
continuity equation,

The presence of the viscous terms hides the role of the convective terms in
momentum equations. To appreciate their influence, we study the subcharacteristics of
the system formed with the next lower order derivatives (WANG, 1971, KRAUSE, 1973) . The
system is written as :

au v oW
(4h.6a) 3% + By + 3z ° 0
{4.6b) u 9! + vV oy PR 9! _ 2 9p ‘v aZU
: 33 oy az g 9X ay2
y
2
o ouw AW 19°p 3w
(4.6¢) u ax * \ 57 + W 32 © " o 3z + Vv s 2
Yy
The characteristic determinant is :
2 _
(4.7) i Ay (UAy + VAy + WA;)C = 0
This shows that the surfaces normal to the wall and the stream surfaces are
subcharacteristic surfaces. The root A = 0 is related to the continuity equation

whereas the rootsjUAx + VAy + wAz = 0 are related to the convective terms of momentum
eguations.
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These subcharacteristics associated with the diffusive nature along normals to the
wall determine zones of influence and dependence., A perturbation at a point P is carried
along the y-axis by the diffusion process and along the boundary layer streamlines by
convection in the downstream direction. Let us notice that, because of the diffusion
process, a perturbation which travels along a streamline affects the whole surface
normal to the wall containing this streamline., Therefore the domain of influence of a
point P is a volume delimited by surfaces normal to the wall containing the outermost
streamlines which cross the normal to the wall passing through P, In the same way, a
domain of dependence of P can be defined (fig. 4.3). In fact, as for eq. (4.1), the
practical domaing of influence do not extend to infinity.

. domain of
inﬂuencc
e -

—-
clomuin

of dependence

Fig. 4.3 - Domains of influence and of dependence

£.3. itia d _bounda conpditiops

The definition of the domains of influence and of dependence dictates the initial
and boundary conditions. As a general rule, if we wish to calculate the boundary 1laver
in a,domain D bounded by a surface normal to the wall, initial or boundary conditions
must be prescribed along the sides through which the fluid enters the domain D.

In principle, the velocity normal to the wall cannot be prescribed but must be
calculated from the initial conditions. Only the U- and W-profiles need to be specified
because the continuity wequation provides a compatibility condition for the normal
.velocity component (KRAUSE, 1873), In practice, the initial conditions are provided by
particular solutions, for example self-similar solutions.

The boundary layer calculation on a fuselage-like body can be initiated at, or

near, the stagnation point where self-similar solutions exist (see for example CRABTREE
et al, 1863), In the immediate vicinity of the stagnation point and by using a suitable
axis system (locally cartesian), the outer flow is given by :

(4.8) - Ug = AX Wy = BZ

where the coefficients A and B depend on the local geometry. The self-similar solution
is such as :

U
u ' W . _ l_g
(4.9) Ue = £'(n) we = g'(n) N = ¥y Nyx

and the velocity profiles are solutions of the following system

(4.10a) £ + f¥" - F + 1 + —gf" =0

(4.10b) 9"‘+f9"—%(g - gg” - 1) =0

where the primes denote n-derivatives.

If 8/A is small, the solution for f is the classical solution for a two-dimensional
staghation point.
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Another useful self-similar solution is the solution along the attachment 1line of
an infinite swept wing. Let Z be the coordinate parallel to the leading edge and X the
coordinate normal to it. The outer velocity is given by :

(6. 11) U, = kX Wy = W, = cst

The self-similar solution is such as :

(6,12} %— = f'(n} %— = g’ (n} n=y g%
e e
and the velocity profiles are solutions of the following equations :
t4.13a) P A
(4.13b) g"' + fg" = @0
The numerical integration gives :

A1 = 0,648 Ig 911 = 0,292 I% )
(6.14)

A, = 1.028 I% 8,, = 0.40¢ Ig Tyz = 0.57 W Jkew

In the X-direction, the solution is the solution for a two-dimensional stagnation
point. In fact, this results from a general property of the laminar boundary layer flow
on an infinite swept wing : the flow along the X-direction is independent of the flow
along the Z-direction and is solution of two-dimensional equations. This follows from
the infinite swept wing equations :

3y 3V
(4.15a) 3% + 3y ° 0
{4.15b) g4,y _ 10 8%y
’ LX% 3y = o 98X a2
Yy
{4.15¢c) u o + v ow = v QEE
aX dy ayz
with the boundary conditions :
U=WWw=V =20 y:O
! U = U tx) Wg = W, = cst y * s

Let us notice finally that if the swept wing is not "infinite", the solution (4.,13)
is often used to start the boundary layer calculations by assuming that the flow is
locally identifiable with the flow on the leading edge of an equivalent infinite swept
wing. '

5 - TEGRAL THODS

As demonstrated by the 1968 and 1980-1981 STANFORD Conferences, integral methods
remain a valuable engineering tool to calculate the effects of boundary layers.

In this section, the principle of integral methods will be first presented in two-
dimensional flows. Afterwards, various types of methods will be discussed in three-
dimensional flows and finally the method we have developed will be presented.

5.1. Integral met in_two-dimensional laminar flows

Nearly all integral methods use the global momentum equation known as the Von
KARMAN equation. In incompressible flow, this equation is :

d
a8 _ce _, in e 2) e
(s5.1) dx 2 ~ ue dx

To solve this equation, closure relationships are needed.

In the Von KARMAN-POHLHAUSEN method, these relationships are obtained by describing
the velocity profiles by means of a polynomial representation, for example :

Q

2 du
u 3 b A _omy3 . .Y g e
(5.2) G- =2 -2nt et o+ enlt -nlt s 0=y As Tr an

Q
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The formula (5.2) represents a family of velocity profiles which depends on the
POHLHAUSEN pressure gradient parameter A. In fact, the boundary layer thickness 0§ does
not appear in equation (5.1) and it is more appropriate to replace the parameter A by A2
defined as :

(5.3) A, =

Indeed, it is easy to express A, as a function of A because 8/8 can be calculated
as a function of A by using (5.2) :

2 2
R - LA W S
{5ELl Ay = A L35 " 9ss " 9 072

. The closure relationships needed to solve the Von KARMAN equation are deduced from
(5.2). The skin friction coefficient and the shape parameter are expressed as :

2
ce o3 A A A
Jigtl = [ -s- vzt [2+5]
3 _ A -
10~ 120
(5.6) How gy
315 ~ 945 ~ 9 072

Another way for constructing the closure relationships is to use the properties of
the self-similar FALKNER-SKAN solutions. Indeed, from these solutions, it is
straightforward to get the relationships H(Az) and (chZ)RB(Az).

One drawback of these methods is that the properties of the family of velocity
profiles are parametrized by Az' This implies, for example, that if the velocity
distribution has a maximum, the boundary layer characteristics are given by the flat
plate solution. This is not true because the boundary layer does not respond immediately
to the pressure gradient. To overcome this difficulty, the Von KARMAN equation is
complemented with a second integral equation. Generally, this eguation is chosen as the
global kinetic energy equation. Another possible choice is the global continuity
equation (entrainment equation). It has often been argued that this latter choice is not
convenient as the boundary layer thickness & is not well defined. In fact, it has been
shown (COUSTEIX, 1984) that it is possible to define & in such a way that the solution
of the global momentum and continuity wequations is compatible with the FALKNER-SKAN
solutions and the global kinetic energy equation. Then, the constructed method is based
on the following set of equations :

du
d8 _ Cf _ o (H v 2) TTe
(5.7a) ax - 3 8 0 7
e
' 5 - &, du
d 1 e
(5.7b) ax (5 - 61) = cE - m %
e
In the global continuity eguation, the gquantity cE = (dd/dx) - (Ve/”e’ is called

the entrainment coefficient because it represents the rate at which the external flow
enters the boundary layer through its external edge.

The closure relationships are deduced from the FALKNER-SKAN solution as the
following functions

5 - &
(5.8a) Ho= HIH™) H o —
Cf Cf
(5.8b) Sfry = SRyt
C_R C.R
E 6 E 8
(5.8¢) = (H)

The analytical expression of these functions are given below :

*
*
W, M H
* a == [ H 2 ] S -
H H (4.02923)
a'= 11,2706 b = - 1.5022 c = 3.1924 H < 4.02923 .
a = 0.33044% b = 0.31993 c = 1,03094 H » 4.02923

Ho 12.37
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1 1 1.7 1 1.7
8 = 2.99259 [[ iyl e ] i H < 4.02923
- . 2.095065
D =B - (H- 1) [ - 0.06815 + 4.336355 [ & - 00 : H < 4.02923
3.35661
D = 0.20644 - 90.30936 |[ —tx ]t - L—. : H.» 4.02923
: : 4.02923 R :
B =0+ (H- 1) [ - 0.06815 + 46.34236 [ —__—l___'? - 13 ]2'338238 ] i H » 4.02923
(4.02923) H
CERG 2 B 4 H + 1 o
x - Z
; H - 1 H - 1
ct
z Reg = B -
5.2. Integral methods jn two-dimensiona bu ow

As in laminar flow, the integral methods in turbulent flow are based on the Von
KARMAN equation and most of them use a second global equation which can be the
entrainment equation or the global kinetic energy equation or a moment of momentum
integral equation.

various techniques have been employed to determine the closure relationships. A few
of these techniques are described below.

5.2.1. Yelocity profiles

The velocity profiles are sometimes represented by the classical power law :
I ¥ 2
(5.8) — =Lz

More elaborate models have been proposed on the basis of a physical wunderstanding
of the boundary layer. These models are derived from the decomposition of the boundary
layer into an inner region and an outer region, between which a 1logarithmic overlap
exists ; this property is certainly the key to the success of such representations.

'Let us recall that in the inner region, it is assumed that the velocity scales on
the friction velocity :

(5.10) up = ug (cfr2) /2

and the velocity profile follows a universal law :

y u
+ + u + T
(5.11) u = fly ) U= g y = v

In the outer region, the velocity defect u, - u scales on the friction velocity and
we have :

(5.12) e F'(n) n = %
T

Compatibility of the behaviour of the velocity profile in the two regions leads to

a logarithmic form in the overlap region (y* -+ = and n + 0) which, in terms of inner
variable, is :

(5.13) u =

where y and C, are universal constants (x = 0,41, C1 = 5). In terms of outer variables,
the logarithmic form in the overlap region is :

e 1
(5.14) .———:——-: i inn + C2

where C2 is a constant depending on the pressure gradient.
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The compatibility between (5.13) and (5.14) leads to the skin friction law :

c
[
o

- . qv/z 1
(5.15) = =[] = 3 in

-

In terms of physical distances, the inner region - -is very thin [(if the REYNOLDS
number is high enough). Therefore, a representation of the velocity defect law is
sufficient to calculate the integral thicknesses. One of the well-known representations
has been proposed by COLES, 1856, This is based on eq. (5.12) and (5.14) :

(5.16) F'(n) = - inn + (2 - win))

1

X
The wake function w is approximated by :

(5.17) w = 1 - cosl(wn)

where B is the parameter of the velocity profiles family.

Other analytical forms have been proposed to represent the velocity profiles. A
rather sophisticated formulation has been given by WHITFIELO, 1980, which is valid over
the whole thickness of the boundary layer.

Another method to generate a velocity profiles family consists of establishing self-
similar solutions. Such solutions have been studied by MELLOR-GIBSON, 1863, and, 1later,
MICHEL et al, 1968, used them in a systematic way to develop an integral method. The
principle of these solutions is to assume that, for a certain class of boundary layers,
the velocity defect profiles are a function of n alone and not of n and X. These
boundary layers are called equilibrium boundary layers. This hypothesis transforms the
partial differential equations into ordinary differential equations. For increasing
REYNOLOS number, the skin friction tends to zero and this leads to simplification of the
resulting equation. In the outer region, the momentum equation becomes :

w = geu'v'> _ _ _F 5
W L Firy * PaF

(5.18)

-ol-c

W

with :

u - u n ] u
F'='———;F(n)=I F'(n) dn : F =r(1)=—'—;p=;—+za;a=-—3——e

T 0 ! sycf/z 1 ¢ 9%

Let us notice that the existence of (approximate) equilibrium boundary 1lavers has
been proved experimentally : these flows are such as B is constant (CLAUSER, 1854 G
ROTTA, 1850).

ol a

* The equation (5,18) has been solved by using a mixing length scheme to express the
REYNOLOS stress - @<u’'v’'>. This produces a one-parameter family of velocity profiles
which can be used in an integral method. The parameter which caracterizes a particular
profile of the family is any quantity associated with the profile. MICHEL et al, 1968,
use -the CLAUSER parameter G :

1
(5.18) f F'2 an
0 H - 1
G = =

1 1/2
J‘F. o H{CF/2)

o .

5.2.2. Ski i i w

The ékin friction law is obtained either empirically or from the velocity profiles
representation.

The most famous empirical skin friction law is due to LUOWIEG-TILLMAN, 18439 :

(5.20) Cf = 0.246 Rs-o.zsa 10-0.678H
This law is valid over a wide range of attached boundary layers.

Another method is based on equation (5.15). For example, the wuse of the COLES
velocity profiles gives the logarithmic law :

2 1/2 1 T 2B N
.21 2_ .1 ;
(5 ) Cf] = in + C‘| + 5
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5.2.3. Entrainment function

1f the entrainment equation is used, a closure relationship is needed to express
the entrainment coefficient. This function is very important because it describes the
rate at which the outer fluid is entrained into the boundary layer, This process
controls the growth of the boundary layer to a large extent and is intimately associated
with the structure of turbulence in the boundary layer.

In many methods, the entrainment coefficient Ce is estimated with reference to
equilibrium boundary layers. For such boundary layers, the x-dependence 1is eliminated,
so the integral equations give algebraic relationships between CE and the boundary layer
characteristics. From the self-similar solutions, it has been shown that the entrainment
coefficient is :

-

e 61 dUe
(5.22) C=P.Y=—_2_[1-2.T_°U—d)(]

From this expression, experimental results such as those given by EAST-SAWYER,
1979, can be used to get the entrainment coefficient. Another way to get it is to wuse
the results of the self-similar solutions.

In certain circumstances, history effects can be very important, for example in
flows which have first increasing and then decreasing positive pressure gradient. It has
been argued that the flow near the wall adjusts very rapidly to change in some
parameter, for example the pressure gradient (TANI in KLINE et al, 1868).- On the other
hand, the outer layer dominated by large eddies and the inertia of which is large, does
not respond instantaneously to external variations when the boundary layers are in non
equilibrium. This physical idea led some investigators to the use of a lag-equation for
calculating the entrainment coefficient. GREEN et al, 1972, have used as guidelines the
turbulent kinetic energy equation as modelled by BRADSHAW et .al (in KLINE et al, ed. ,
1968) from which they inferred a lag entrainment equation. Essentially, the effects of
history are included through the difference between the actual pressure gradient and a
fictitious equilibrium pressure gradient, which would give the same boundary layer
characteristics.

Let us notice that if the global kinetic energy equation is wused instead of the
global continuity equation, a dissipation function D has to be modelled :

=4

]
‘v ou 1 @
D = Ju [— <u'v’'> + v 3y ] 3y dy

A similar discussion as above can be done because in the same way as the
entrainment coefficient, the dissipation function is strongly associated with a
turbulence model.

5.3. ntegral method in three-dimensiona t _flows

As in the two-dimensional case, the integral methods are based on the global
momentum equation but, in the three-dimensional case, there are two momentum equations
which have been given in § 3.2.. Most of the methods use a third equation which can be
the global continuity equation (MYRING, 1970, SMITH, 1972, COUSTEIX, 1974, STOCK, 1979,
CROSS, 1979, OKUNO, 1976} or the global kinetic energy equation (SWAFFORD, 1983). OKUNO
uses a fourth equation which is the moment integral equation of the crosswise momentum.

The closure relationships are often obtained from the wuse of streamwise and
crosswise velocity profiles. It 1is generally assumed that the streamwise velocity
profiles behave in the same way as the velocity profiles in a two-dimensional boundary
layer. MYRING, SMITH, OKUNO use the power law prafiles ; COUSTEIX uses the self-similar
solution developed by MICHEL et al, 1968 ; STOCK uses the COLES velocity profiles.

The streamwise skin friction coefficient and the entrainment coefficient are also
generally calculated from two-dimensional relationships.

The modelling of crosswise velocity profiles is often very empirical,
The MAGER representation is often used (MYRING, SMITH, STOCK) : this is written

w 2
(5.23) o tanﬂu (1 - n}

Even when the crossflow profile is simple, such a formulation often gives rather
crude relationships for the dependence between the crossflow characteristics.

A triangular representation of the polar plot wlu) has been proposed by GRUSCHWITZ,
1935, and re~used by JOHNSTON, 1960. The location of the apex of the triangle at a fixed
yv* value (y* = 13) allows a relationship to be set up from which the 1limiting angle Bn
is calculatéd. In many cases, this formulation yields satisfactory relationships for the
thicknesses. However, the law for the limiting angle Bu seems to be less well founded.
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More generally, polynomial representations have been proposed (EICHELBRENNER, 1965,

SHANEBROOK~-HATCH, 1970, OKUNO, 1976) ; for example :
(5.24) Y_ - tanB.P,(n) + C P_(n)
8 ue = an D1 n 2 n

In the method proposed by EICHELBRENNER, an equation is provided to —calculate the
second parameter. This equation can be considered as an extension of the SQUIRE-WINTER
relation discussed in § 1.1.. In the method developed by OKUNO, a moment of momentum
integral equation is used to calculate the second parameter,

In the method developed by COUSTEIX, the crossflow velocity profiles have been
generated from an extension to three-dimensional boundary layer of the self-similar
solutions. The resulting closure relationships are given in appendix.

Finally, let us mention the method proposed by COLES which gives a vectorial
representation of the velocity profile within the boundary layer., This 1is an extension
of the law of the wall-law of the wake used in two-dimensional flow. The boundary layer
velocity vector is given by

-
vla_|
3:=3 1 i X X
(5.25) 6= a, [ X 1in v + C o+ Y [ 5 ]]

o
where Qt is parallel to the skin friction vector ¥p and its modulus is er/g. T is a

tensor such that wﬁT is parallel to the external velocity,.

In this formulation, the velocity vector turns from the direction of the 1limiting
wall streamline to the direction of the external velocity. A similar model has been used
by CROSS, 1979 and LE BALLEUR, 1983,

From the brief presentation of the various hypotheses used to establish the closure
relationships, two main difficulties can be discussed.

The first difficulty is the modelling of the entrainment coefficient. As already
said for the two-dimensional case, this coefficient is intimately associated with the
boundary layer turbulence structure. Now, the experiments of ELSENAAR-BOELSMA, 1974, and
BRADSHAW-PONTIKOS, 1985, have shown that the turbulence structure is modified by the
three-dimensionality of the flow. In particular, the main axes of the stress tensor are
no longer aligned with the main axes of the velocity  gradient tensor H the transport
velocity for the turbulent kinetic energy decreases ; the magnitude of the shear stress
decreases compared with an equivalent two~dimensional boundary layer. These effects
result from the effect of c¢rossflow on large eddies and it is probable that the
entrainment rate decreases when the three~dimensionality develops. This is not taken
into account when it is assumed that the entrainment coefficient follows the same rules
as in two-dimensional flow.

The second difficulty to establish the closure relationships is that there is no
counterpart of the two-dimensional law of the wall which is important for the success of
the representation of velocity profiles. Several attempts have been made to extend this
law:0f the wall. Generally, the behaviour of the velocity profile is obtained by solving
the basic equations with a.similarity hypothesis and by using a turbulence model, for
example a mixing length model (Van den BERG, 1975). In two-dimensional flow, the
reasoning is not at all the same : the 1logarithmic law of the wall comes from the
analysis of the double-layer structure of the boundary layer and turbulence models are
devised to reproduce the properties of the velocity profile. Recently, GOLDBERG-
RESHOTKO, 19B4, have performed an asymptotic analysis of the three-dimensional boundary
layer. They found that the direction of the velocity is constant in the inner layer ; at
very iarge KcrNULUS number, this result 4is certainly true but, in practice, it is
insufficient because the experimental results show that the velocity direction <can vary
rapidly near the wall. In the JOHNSTON's model, the apex of the polar plot is around
y* = 13 ; this means that it cannot be assumed that the velocity direction in the
logarithmic region is equal to the wall limiting angle BD.

5.4. Calculation of the transitiop region

A review of problems arising from the laminar-turbulent region is provided by the
AGARD Special Course on Stability and Transition in Laminar Flow (AGARD Report N° 7089)
and the paper by ARNAL, 1986.

The practical calculation of a laminar-turbulent transition region involves two
problems. The first one is the determination of the onset of transition . and the second
one is the calculation of the transition region itself.



The calculation of the transition region can be performed by weighting the
properties of a fictitious laminar boundary layer and a fictitious turbulent boundary
layer ; this is the so-called “intermittency” method. The welghting function vy 1is
defined from the evolution of the momentum thickness :

where 811 is the value of the momentum thickness at the onset of transition.
T

Although this treatment is crude, the influence on the downstream boundary layer is not
very large. It is more important to predict accurately the location of transition onset.

In two-dimensional flow, transition can be caused by several mechanisms. In the
case of the so-called natural transition, the first stage of the process is described by
the occurrence and the amplification of unstabilities which are called TOLLMIEN-
SCHLICHTING waves. The 1linear stability theory enables us to calculate the
characteristics of these waves as eigensolutions of the 1linearized NAVIER-STOKES
equations. From this theory, there exists a REYNOLDS number below which all the
disturbances are damped. We will call this REYNOLDS number Rlns B

One of the most successful criterion for the onset of transition is based on the
calculation of the amplification of the TOLLMIEN-SCHLICHTING waves when the REYNOLDS
number is larger than R ins- The e"-method (SMITH-GAMBERONI, 1856, Van INGEN, 1956, 1877)
says that the onset of transition occurs when the amplification is equal to e" where n
is a coefficient which depends on the turbulence level of the external flow. ARNAL et
al, 1884, have applied this technique to the FALKNER-SKAN laminar self-similarity
solutions and they deduced a practical criterion for the onset of transition which
extends the GRANVILLE criterion (1853) by taking into account the effects of external
turbulence. This criterion also includes the effects of pressure gradients. It is given
by (fig. 5.1) :

(5.26) R, - R = - 206 exp (25.7 Xz)(ln 16.8 Tu - 2.77 Xz)

where Tu is the turbulence intensity in the external flow

2 2 1/2

(5.27) L R e R R A STZ T

Kz is a mean value of the POHLHAUSEN parameter :

_ 1 X B2 due
(5.28) /\2 = TS T -—v _—dx dx
ins X.
f ins

The location Xr of the transition onset is determined when the value of the
REYNOLDS number RB Calculated in laminar flow is equal to the value of Ra given by the

formula (5.26). This formula also involves the calculation of Xg

and R . The
Uk Bins

values of x;. . and Rg. are determined when the REYNOLDS number Rg calculated in
ins

laminar flow is equal to the value of a critical REYNOLDS number Rg (at the point
cr

X we have Rg = Ra = Ry ). This REYNOLDS number Ra is obtained from the

cr ins
analysis of the stability properties of the self-similar solutions. It 1is assumed that
RB is a function of the shape parameter H :

Xing

1 0.5
.2 [= - 0.3

Fes.27+17 2 [H 0.33]}

s H<2.5
(5.29a) Rg m <
cr ad
r 3.5 , 2:887 , 22 230

H 10

R =] 2 H> 2.5
8 H -

cr -

where H is the value of the shape parameter of the boundary layer calculated in 1laminar
flow,

Other mechanisms than the TOLLMIEN-SCHLICHTING waves can lead to tr?nsition' and a
number of parameters can delay or promote the location of “natural” transition given by
(5.29). In these cases, specific criteria are needed.
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In a three-dimensional flow, the "natural” transition can occur from the same type
of instability as in two-dimensional flow. For practical calculation, it is assumed that
the properties of stability of the streamwise velocity profiles are the same as those of
a two-dimensional velocity profiles. The transition can also occur from an instability
of the crossflow and this <crossflow instability can develop in regions where the
streamwise velocity profile is stable. On a swept wing, it results that this crossflow
instability can cause a transition very close to the leading edge even if the streamwise
velocity profile is stable in this region.

From experimental data, ARNAL et al, 1984, have extended the BEASLEY, 1973,
criterion for predicting the onset of crossflow transition (fig. 5.2) :

(5.30) (R6,), = 222 atan [ 2108 ] 23 cnca
(H 2.3)
where 5, is given by :
: 5 = Jé - ¥ a4y
e 0 ue
For practical calculation, it is assumed that the streamwise and crosswise

transition processes are uncoupled. This means that transition occurs when one of the
two criteria (5.29) or (5.30) is first satisfied. The criterion (5.29) is applied to the
streamwise boundary layer and the criterion (5.30) is applied to the crossflow,

A third kind of transition c¢an occur due to the so-called leading edge
contamination. In this process, the boundary layer developing along the leading edge
{attachment line) can be perturbed by the boundary layer coming from the fuselage. From
various experiments (see, for example, POLL, 1884), it results that the boundary layer
along the leading edge is laminar if the REYNOLOS number weB/v is less than 100 (W, is
the external velocity component along the leading edge and 8 is the momentum thickness
of the corresponding boundary layer). If the REYNOLDS number wee/v is larger than 100
{or 150), it is probable that the 1leading edge is turbulent. However, due to the
negative pressure gradient downstream of the leading .edge, the boundary layer can
relaminarize. A criterion used by LAUNDER-JONES, 1968, in two-dimensional flow and by
BEASLEY, 1973, in three-dimensional flow is :

v aue
(5.31) — = 5§ 10 -
" 9

where s is the distance along an external streamline. -
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5.5, Description of an jntegral met

The integral method we have developed (COUSTEIX-QUEMARD, 1972, COUSTEIX, 1974) for
calculating three-dimensional boundary 1layers is based on the solution of global
equations of continuity and of momentum (eq. 3.3). The equations are written in a non
orthogonal curvilinear axis system.

The method has been developed in 1laminar and turbulent flow. The transition
location can be prescribed a priori or calculated as described in § 5.4..

The closure relationships, in the laminar and turbulent cases, have been obtained
from self-similar solutions. They are valid in compressible flow (Mg <€ &) on an
adiabatic wall. These relationships are given in appendix., For convenience, they are

given in a streamline coordinate system but they can be transformed into relationships
for the boundary layer characteristics expressed in any curvilinear non orthogonal axis

system. These relationships have also been extended to calculate a three-dimensional
wake. ' .

The procedure is first illustrated in the case of an incompressible two-dimensional
dissymmetrical wake, We define an upper half-wake and a lower half-wake separated by' the
line Yo which is the minimum velocity line. Along this 1line Voo it is assumed that the
shear stress is zero. Then the global equations for each part of the wake are :

- r half wake (subscript u

dé V. u - u H. .+ 2 du
(§5.32a) u. 0. WM g 2 =
. dx u u u u dx
e e
R dai{s - 61)u . . 12 _ (& - 61)u due
dx Eu ue ue dx
- lower hal ake script
(5 331 dBl o :2 u, - vy e Hl + 2 due
2 dx u u 1 u dx
e e e
R d{s - 61)1 . e - :2 ) (6 - 61)1 due
: dx - 1 u u dx
e e

where Vo is the vertical velocity along the yu—line and u. is the minimum velocity.

., For each part of the wake, the velocity profile is modelled by :

u - u y -y
e _ 3/2 _ 2 . N 0
(5.34) = = [n 1] ] n=—3
2 e m

e m _ H -1
(Siaail u, T 0.7013 A
] u_ - u
LA e m
{(5.35b) 5 0.45 o

{5.36) C_ = 0.16 —2 U

For a given value of vg. the systems (5.32, 5.35, 5.36) and (5.33, 5.35, 5.36) for
the upper half-wake and the lower half-wake can be solved separately. In general, these
solutions will lead to different values of Un for the upper half-wake and the lower half-
wake, The value of Vo is calculated step by step to have the same value of u s this

: < : m
calculation is performed by a shooting method.

In the case of a three-dimensional wake, the principle is the same except that the
crosswise global momentum equations are used to calculate the crossflow.

It is assumed +that the streamwise velocity profile behaves 1like in a two-
dimensional flow and relationships (5.34), (5.35), (5.36) are used to model the
streamwise velocity profile.
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Fig., 5.3 - Modelling of the crossflow in a three-dimensional wake

The crosswise velocity profile is obtained by assuming a triangular polar plot
(fig. 5.3)., From this modelling, we deduce the following relationships for each part of
the wake !

Gp = - CHByy i Bpq = = CByy i Byp = C(H - 1084y | 5, = - c2(H - 18y,

The values of C, and Cyp result from the solution of crosswise momentum equations
written for each half-wake.

In compressible flow, the total enthalpy hi in the wake can be assumed constant if
the wake develops behind a wing with an adiabatic wall. If it is also assumed that the
velocity profiles can be modelled by the same representation as in incompressible flow,
it is easy to extend the method to this case.

5.6. xamples a ication

A first example of application of the integral method in turbulent flow is given in
fig. 5.4. This is the study of the flow around the M6 wing (SCHMITT-COUSTEIX, 1975).

Calculated wall streamlines are compared with experimental wall flow visualization. The
free stream velocity is 90 ms~ 3 the angle of attack is 15°. The initial condition for
the boundary layer calculations have been prescribed from cross-checking with boundary
layer measurements at a few stations on the wing. '

Fig, §.4 - Boundary layer ealculations on the M6 wing
—— + — calculated wall streamlines
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Another example is the study of the turbulent boundary layer in supersonic flow

in
a curved channel (COUSTEIX-MICHEL, 1975). The MACH number is about M_ = 1,6, The initial
conditions have been prescribed from boundary layer measurements at the initial station.

In addition,’ boundary conditions have been prescribed along the upper wall
nozzle. The crossflow is assumed to be zero along this boundary.
given in fig. 5.5.
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Fig. 5.5a - Boundary layer calculation in a curved supersonic nozzle
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The integral method has also been applied to the
1979).
distribution are shown in fig.
the normal incidence is 8°
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Another application of the integral method has been provided by the experiment
performed by MEIER et al, 1984, on an ellipsoid. In these experiments, the external flow
conditions (magnitude and direction of external velocity) have not been measured. These
data have been calculated from the measured wall pressure distribution as described in
GLEYZES-COUSTEIX, 1984. Several cases have been calculated. The first one is at low
REYNOLDS number, in laminar flow, for an angle of attack of 10°. The calculated wall
streamlines are compared to the experimental wall streamlines obtained from measurements
with directional skin friction gauges (fig. 5.7). The <calculations stop when a
singularity is detected ; this problem will be discussed further in paragraph 6. The
locus of the termination points suggests the formation of a separation 1line whose
location compares rather well with experiments,

Fig. 5.7 - Boundary layer on an ellipsoid - Wall streamlines - Laminar flow - o = 10° - Re = 1.6 10°
a) Experimental results (MEIER et al, 1984) - b) Calculated results (integral method)

The boundary layer on the ellipsoid has also been calculated at a higher REYNOLDS
number for the same angle of attack 10°'. In this case, the boundary layer is laminar,

transipional and turbulent. In the calculations, the onset of transition has been
prescrlbeq from the experimental data. The calculated wall streamlines compare well with
the experimental results (fig. 5.8) ; in particular, they suggest the  occurrence of a

separated zone in the rear region as in the experiment. A more 'detailed comparison is
given in fig. 5.8 where the thicknesses 61 and 6 and the shape parameter H are plotted
as a function of the azimuth for two sections. (These boundary layer characteristics
have been calculated by GLEYZES et al from the velocity profile data supplied by MEIER
et al, 1984). The general behaviour of 61 and 62 is well reproduced but the maximum of
62 is overestimated.

Boundary layer on an ellipsoid - Wall
streanlines - a = 10° - Re = 7,2 10°
a) Experiments (MEIER et al, 1984)
b) Caleulations (integral method)
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The last example is an application of the dintegral method to the experiment
performed by BRADSHAW and PONTIKOS, 1985 (GLEYZES-COUSTEIX, 1986, unpublished). This
experiment is a study of a three-dimensional boundary layer developing on an “"infinite
swept wing”. The conditions are similar to those of the Van den BERG et al experiment,
except that the initial boundary layer is thinner so that separation is not reached. The
main set of data has been taken at four stations on a line parallel to the tunnel axis.

The comparisons between the calculated results and the experimental results (fig.
5.9) show a good overall agreement on the streamwise and on the crosswise
characteristics. However it should be noticed that the calculations are sensitive to
initial data as described below. In principle, the experiment has been devised in such a
way that the boundary layer characteristics are invariant along the spanwise direction.
In fact, there are slight variations of the boundary layer characteristics along the
inital data line parallel to the span (PONTIKOS, 1982). At first sight, these variations
are within the accuracy of measurements but if calculations are performed by using two
different sets of initial data taken at two stations along the initial data line, it is
seen that the results are significantly different (fig. ©5.9). Indeed the initial
differences between the data are not damped but they are amplified. This means that to

avoid misinterpretations, a very high accuracy of measurements is needed especially in
the initial data.
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6 - SINGULARITYTIES UNDARY LAYER LCUL S

The boundary layer equations (either local or global) are completed by «closure
relationships and are associated with appropriate initial and boundary conditions. Then,
it is assumed that the problem is mathematically well posed and numerical means are
employed to solve it. However, it is not known a priori that a solution exists in any
preassigned domain.

From the local equations, the analysis of this problem 1is dgenerally performed in
laminar flow although it has not been shown that the turbulence model has no influence.

6.1. Stea wo-dimensional bou ry lave

The GOLDSTEIN, 1948, analysis of local equations in laminar flows has shown that a
possible stop of computations 1is due to a singularity in the equations which is
characterized by an unbounded vertical velocity and a zero skin friction. This has been

confirmed by a number of numerical results. The wall shear stress vanishes as the square
root of the distance from where it is zero and no solution exists downstream.

Obviously the singularity is not physical, but it is often argued that the
behaviour of the solution near the singularity is an exaggeration of the actual flow.

The properties of integral methods (in laminar or turbulent flow) have strong
similarities with local methods. Let us consider the system of the global continuity and
momentum equations :

d(é - &§,) § - & du

1 1 e _
(6.1) dx + u dx CE
e
(5 2) a8, on»2 e cr
ot ax u_ dx 2
e
The closure relationship for H = (& - 61)/8 has the form :
(6.3) HY = W' (W)

This is exactly the form of the relationship used in 1laminar flow., In turbulent
flow, this form is an approximation of the ‘actual relationship because H depends also
slightly on the REYNOLOS number, but this dependence is weak.

If equation (6.3) is used in equations (6.t) and (6.2), we obtain the following
system

, g8 _ Cf B(H + 2) e
L2 dx 2 u dx
e
ds du
) * *, . db *, 1 _ x 8 e
(6.5) {H - HH ) ax + H ax - CE H u_ ax
% an”
where H " = —
dx
From equations (6.4) and (6.5), the derivatives dB/dx and d&,/dx gan be calculated
if H'' # 0. In fact, the case H ' = 0 can occur because the function H (H) has a minimum
at a point H® = H_, H = He. This minimum is obtained for Hc = 4,03 in laminar flow and
around H_ = 2.8 in turbulent flow. These values are associated with the =zero skin

friction point.

As-with the local equations, it is not possible to continue the calculation beyond

the point H = Hc because equations (6.4) and (6.5) can be combined to give :
* du
dH_ * Cf * 9 e
(6.6) 8 i CE - H 2t H (H + 1) U: i

In a calculation, when a point x = x_ is reached where H = H., the right member of
(6.6) is generally non zero and negative so that H becomes smaller than H_ and
equation (6.3) gives no solution for H.

Another problem related to the occurrence of a singularity is that the results
obtained at locations close to a possible singularity are very sensitive to various
factors, such as (for example) the numerical scheme, the evaluation of the pressure
gradient, the closure relationships. Small modifications in these factors can lead to
large differences in the results. Therefore, it is difficult to separate the influence
of each factor, particularly the influence of the «closure relationships (when working
with the local equations, these relationships are the turbulence model). This can 1lead
to unfortunate misinterpretations.



6.2. Inverse method in two-dimensiona

Instead of solving equations (6.1), (6.2), (6.3) with a prescribed velocity
distribution u_(x), it is possible to consider that u_ is an unknown and that 61(x) is
prescribed. This is the so-called inverse mode (CATHERALL-MANGLER, 1963), In fact, an
infinite variety of inverse modes can be imagined ; instead of prescribing 61(x). it is
possible to prescribe the function H(x) or any other function of boundary layer

characteristics.

If 61(x) is prescribed, equations (6.1) and (6.2) can be rewritten as a system for
B and u_ :
e

dB H + 2 e cf
6. Lol T ANCR.
L ax T % U ax 2
e
du dd
* *, . dB * B e _ x, 1
(6.8) (H - HH ) ax + H —ue ax = CE H _dx

In general, the calculation of dB/dx and d61/dx is possible even when H » Heo
The inverse methods can be used in design techniques where a certain optimisation
condition is prescribed.

The inverse methods have also been widely wused in viscous-inviscid interaction
techniques. In this case, the problem is not to solve the boundary layer equations alone
but the coupled system of boundary.layer equations and inviscid equations. A very clear
presentation of the problem is given for example by VELOMAN, 1980.

6.3. Ihree-dimensional boundary layer

The nature of the system of global equations used in an integral method has been
studied by MYRING, 1970 and COUSTEIX-HOUDEVILLE, 1981. The integral method is based on
three global equations (continuity and momentum equations) which are complemented
with closure relationships.

The equations form a system of three first order partial differential equations. It
has been shown that the system has three characteristic directions which are always real
and distinct. The system is hyperbolic. This property is related to the fact that the
boundary layer streamlines are subcharacteristics of the system of local equations and,
due to the integration with respect to y, the number of characteristics reduces.' This
number is equal to the number of global equations.

The calculation of characteristic roots of the set of global equations has been
performed (COUSTEIX-HOUOEVILLE, 1981) with approximate closure relationships. The angle
of the characteristic directions is defined with respect to the external streamline ;
its'value is tan” 'y. The three characteristic roots are :

(6.9) i s CUH - 1)

. 1 1 - BH
(6.10) ’ Yp = C(H - 1)
(6.11) Yy ® Tgﬁi?—éTﬁl;—T
« = 0.631 B=-a+Ja? + a = 0.382
The coefficient C in eqs. (6.9), (6.10), (6.11) is a parameter defining the
crossflow velocity profiles B for the calculation of v, the crosswise integral

thicknesses are calculated with an approximate crossflow velocity profile : w/ue=c(1-u/ue

From the closure relationships used in the integral method, it has been shown that
the Yl—characteristic line is very close to the limiting wall streamline. The other two
characteristic 1lines 1lie between the 1limiting wall streamline and the external
streamline (fig. 6.1).

external cxter!_\?i
streamlines il
LB
e [
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Fig. 6.1 - C%aracterist?c lines of the set of Fig. 6.2 - Variation of the direction of the y; charac-
global equations teristie line with the value of the shape

parameter



The hyperbolicity of the set of global equations leads to the concept of dependence
and influence domains which are very similar to the domains defined from the analysis of
the nature of local equations. From the global equations, the domain of dependence of a
point P is bounded by the Yy~ 2and ya—characteristic lines passing through P, Roughly,
this domain c¢an be approximated by the domain bounded by the 1limiting wall streamline
and the external streamline.

The values of the characteristic roots depend on the value of the shape parameter H
and therefore the opening of the domain of dependence depends on H. In the range
1 < H < , the angle between the Yo~ (and ¥3-) characteristic 1line and the external
streamline is between - w/2 and w/2 :

1

- w/2 < tan” ! vy, < w/2 1 < H K=

- w/2 < tan~! Y3 € w/2

but the angle between the 71-characteristic line and the external streamline can be
larger (fig. 6.2) :

- v < tan"? Yy &m

Obviously, this opening of dependence domain must be taken into account in
the numerical methods because the equations cannot be integrated against the direction
of the characteristic lines,

The Yy -characteristic line and the external streamline are at right angle when
H = H_ = 2.6. This value of H corresponds to a zero-streamwise skin <friction. However,
this point is not singular except if the flow has a locally two-dimensional behaviour in
the same way as discussed in § 6.1..

Generally, in the three-dimensional case, the singularities are not local. They
must be sought rather in configurations leading to a <focusing (convergence) of the
characteristic lines belonging to the same family. More precisely, the ’71-characteristic
lines {(which are close to the wall streamline) are likely to <converge and to form a
shock (in the sense of the theory of <characteristics). In fact, it has been shown
analytically that the formation of a shock is possible. This shock is a 1line of
discontinuity for certain boundary layer thicknesses. Obviously such a discontinuity is
physically meaningless but it can be argued that it is an exaggeration of the actual
behaviour of the flow and that it results from the wuse of the direct mode. It is
probable that the formation of such a discontinuity line is a signal that reveals the
need of calculating the flow with a viscous-inviscid coupling technique,

An example of computed results is presented in fig. 6.3. The support of the
calculations 1s an experimental study by LINDHOUT et al. This experiment has been used
as a test case for a workshop on three-dimensional boundary layers held in AMSTERDAM,
September 18979. The objective was to calculate the boundary layer developing on a wing
root. The data consist of the magnitude and direction of the velocity in inviscid flow.
Boundary layer characteristics were given as initial data along a starting line close to
the leading edge. The calculations were performed by wusing full closure relationships
that are more accurate than those used to analyze the properties of equations.

The computed results given in fig. 6.3 show the external streamlines and the wall
limiting streamlines, They also show the contours of the leading and trailing edges. The
calculated wall streamlines form a line of convergence and the overall topology of these

wall streamlines suggest the occurrence of a separated zone. The experimental results,
based on wall flow visualizations, confirm the existence of a three-dimensional
separation in the same region. In the experiment, this separation leads to a strong

vortex flow.

In the domain (X/b > 0.3, 2Z/b < 0.2), we note the fan-shaped pattern of the
computed wall streamlines and we note also the existence of a dividing 1line which 1is
also revealed by the experiment.

It is doubtful that a boundary layer calculation method can reproduce the flow in
separated vortex flow. In addition, it is clear that the flow should be <c¢alculated by
accounting for the strong viscous-inviscid interaction which has not been done in the
present calculation. However it is interesting to note that a rather simple method is
able to give very useful information.

exlernal
04] slreamlines
T aeoowall
streamlines
Z
b Unb_ 908,10°
03 VY
Fig. 6.3 - Caleculation o} the three-dimensional
boundary layer on a wing root section
0,24 (calceulated by COUSTEIX & AUPOIX in
’ LINDHOUT et al, 1981)
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The following example also involves a separation phenomenon. This 1is the boundary
layer flow on an “"infinite” swept wing investigated experimentally by Van den BERG et al
and ELSENAAR-BOELSMA. The boundary layer flow was generated on a 35" swept flat plate H
a pressure-inducing body placed above the plate was designed to produce a pressure
gradient which causes the separation of the boundary layer on the plate. In this «case,
the separation is characterized by the wall streamlines which become parallel to the
plate leading edge.

The calculations presented in fig. 6.4 have been performed with an integral method.
In fact, the results of two calculations are presented. Firstly an inverse method has
been applied.

In these calculations, the input is the experimental distributions of 61 and &,
whereas the distributions of the modulus and of the direction of the external velocity
are results of the calculation. The characteristics of the boundary layer other than 61
and 62 are also results of the calculation.

As shown in figure 6.4, good agreement with experiment is obtained for H, ﬁo, the
modulus u, of the external velocity and its direction o defined with respect to a normal
to the leading edge. In particular, the experimental location of separation is well

reproduced (the separation is characterized by a + ﬁo = 90" : the wall streamlines are
parallel to the leading edge). v
The second calculations have been performed in the direct mode : the external

velocity distribution (the modulus ug, and its direction a) is the input whereas the
distributions of 61 and 62 and of the other characteristics of boundary layer are
results of the calculations. In these calculations, the distributions of wu, and a are
not taken from the experiments but from the outputs of the inverse calculations
presented above. Surprisingly, the «calculated distributions of H and 8, are very
different in the direct and inverse methods. In particular, the direct calculations do
not indicate a separation. This discrepancy dis obviously a result of numerical
difficulties in the direct mode caused by the proximity of a singularity. Let wus notice
that direct calculations performed with the experimental distributions of u, and o lead
to results which are similar to those obtained with the distributions of ug, and a taken
from the inverse calculations.

These results clearly demonstrate the kinds of misinterpretations that can result
in the neighborhood of an expected singularity if the calculations are performed in the
direct mode. They also imply that it is incorrect to calibrate a calculation model from
direct mode calculations of a boundary  layer close to separation because it is
impossible to attribute such and such a cause to such and such an effect. It is believed
that the same problems occur with a method solving the local boundary layer equations.
In this case, it is incorrect to try to calibrate the turbulence model from direct mode
calculations near separation. Moreover, as stressed by CEBECI, 1984, a kind of flow as
the Van den BERG et al experiment, which involves separation, is mainly pressure driven
and the turbulence model is unimportant. Other parameters such as the normal pressure
gradient should be considered very carefully.
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Fig. 6.4 - Caleulation of Van den BERG et al's (1975) emperiments with an integral method (COUSTEIX, 1982) ;

imwerse mode (§, and 8, prescribed from experiment) ; ----- direct mode fexternal velocity
distribution presariged f?om the results of the inverse mode caleulations) ;”+ experimental exter-
nal velocity from wall pressures ; X experimental external velocity from boundary layer edge
measurements ; 6o experimental values
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1 - S TION O OCAL EQUATIONS

In laminar flow, the set of continuity equation and momentum equations form a
closed system of equations for the three components of velocity because, according to
the boundary layer approximation, the pressure distribution is known (here we assume
that the boundary layer problem is posed in the direct mode).

In turbulent flow, the system of equations 4is not closed because the REYNOLDS
stress - p<u‘v’> and - p<w'v'> are additional unknowns. A turbulence model needs to be
used to calculate these terms : this problem will be discussed in § 7.2.. 1¥f we assume
that a turbulence model is available, the system of equations is closed.

Except for a few particular solutions, the boundary layer equations cannpot be
solved analytically. Then, numerical methods are employed. The general principle of
these methods is nearly the same for laminar or turbulent boundary layers. In the
literature, several papers are devoted to the description of the numerical methods (see
for example the review papers by KRAUSE, 1972, SMITH, 1982). Here we will describe only
the general features of two simple and representative schemes.

T.1. umerica etho

Most of the numerical methods are based on finite-difference approximations of the
X-, 2~ and y-derivatives. In this way, the equations are transformed in a set of
algebraic equations.

One of the rules to construct a correct numerical approximation is the COURANT-
FRIEDRICHS-LEWY condition which states that the numerical domain of dependence of a
difference scheme should include the domain of dependence of the differential equations.
Let us remind that the domain of dependence of the differential equations 1is determined
by normals to the wall and boundary layer streamlines (§ 4.2},

The finite difference approximations are developed from a grid consisting of
reference points (Xi. Zj. yk) which form a regular network.

A first example of a finite-difference molecule is given in fig. 7.1a.

In the scheme associated with fig. 7.1a, the equations are written at point M(xi,
2., yk). The y-second derivatives are approximated by using the points (Xi, Zj, Vk~1)'

(}i, Zj, Yichs (xi, zj, Vk—1) whereas the X- and Z-derivatives are given by :
(1.1) [&7 - fivt 3ok " Tai3ik
) X 4M X, - X,

i+ 1

TR P S ISl O W
M Zj*'l- Zj

™M
[l d
N |

(7.2)

In this way, the calculated point represented by a star (x}) in fig. 7.1a, is
obtained explicitly as a function of the other points which are assumed to be known.
Then, the points belonging to a complete y-column can be calculated successively. After
a y-column has been calculated, a next y-column is calculated as shown in fig. 7.1b
which gives the scanning sequence of the calculation domain.

This is a very simple scheme which is easy to code but it suffers from a few
drawbacks associated with the CFL condition. This scheme is correct only if W < 0 and if
the X-step is restricted by the condition AX/AZ < m;n fwisu. (If W > 0, the
symmetrical molecule shown in fig. 7.1a can be used).
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O Z derivatives 1 [
w<o XY der':va\'.'lm w>o 1///!11/@2771521311/1@7//“/@// 77. /©
#* calevlated Pe'ln‘l imtial  condition
a) Finite difference molecule b) Seanning sequence of the caleulation domain
(W <0)

Fig. 7.1 - Example of an "explicit' scheme
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A second example of a finite~difference molecule is given in fig. T.2a. The
equations are written at point M and the convention for writing the various derivatives
is the same as in fig. 7.1. The solution is now sought at point M. The difference with

respect to the scheme of fig. 7.1 is that the solution at point M <cannot be determined
explicitly as function of the known points. In effect, the solution at point M depends
on the solution at all the points belonging to the yy-column : in this sense, the scheme
1s implicit and the solution is sought simultaneously along a complete yi-column. {The
use of three points to express the y-second derivatives leads to solve a three-diagonal
matrix). The CFL condition restricts the application of this scheme to the case W < 0,
but there is no restriction on the X-step (if W < 0). If W > 0, the symmetrical molecule
shown in fig. 7.2a, is used,

This scheme seems very interesting as there is no restriction on the X-step but the
problem is that, in general, the W-component is not positive {or negative) everywhere.
When W changes sign in the calculation domain, it is necessary to switch operators. This
method has been used by LINOHOUT et al, 1981, who have constructed an algorithm defining
the scanning sequence shown in fig. 7.2c¢. According to the sign of W, a left or a right
implicit operator (fig. 7.2a) is used and the switch is performed by using an explicit
operator. In the sequence shown in fig. 7.2c¢, the first operation is to determine the
point 1 by using the explicit operator i afterwards, the points 2, 3, 4, 800 are
calculated by using the implicit operator (W > 0) and finally, the points 9, 10, ... are
calculated by using the implicit operator (W < 0). The advantage of this sequence is
that the restriction on the X-step is minimized because the explicit operator is wused
when W changes sign, that is, when W is small.

*
(xhzﬁn,Y&) M(Xthj%)
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condilion :' E i condilion
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' ' b) Scanning sequence (W < 0)
f unknown
hneven -
w>0 w<0
M&M e) Sequence used by LINDHOUT et al (W < 0 and w> 0)
Fig. 7.2 - Example of an "implicit" scheme
Other efficient numerical schemes have been developed to calculate three-
dimensional boundary layers. Let us mention the zig-zag scheme by KRAUSE et al, 1969,

and the box scheme, the zig-zag box scheme and characteristic box scheme developed by
CEBECI et al, 1979.

Although several numerical schemes are satisfactory, this problem should not be
considered as solved. As stressed by CEBECI, 1984, improvements on the accuracy and
economy of calculation methods become increasingly important as the methods are
increasingly used for design purposes. Indeed, such applications invelve a very large
number of runs and the calculation time is of prime concern. This is one of the reason
why integral methods are still used. From results obtained at the AMSTERDAM Workshop on
three-dimensional boundary layers (LINDHOUT et al, 1981), it is found that dintegral
methods are an order of magnitude faster than 1local methods, even with a simple
turbulence model. In addition, they are often able to give enough accurate answers to
practical problems. However, it is clear that integral methods can only Ealculate flows
for which they have been tailored. The hope which is placed in the solution of local
differential equations is their potential of applicability to a wider range of flows. In
laminar flow, there is no doubt that the solution of local equations 1is more accurate
but, in turbulent flow, the accuracy is strongly dependent wupon the turbulence model.
This problem is discussed in the next paragraph.
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7.2, Jurbulence modelling

The simplest three-dimensional turbulence models are direct extensions of two-
dimensional models. For example, the mixing length model used by COUSTEIX et al, 1871,
reads : .

(7.3) Tex = M 3y p<u’v'> = glv + vt) y Tyz = M 3y - ekw'v'> = @lv + vt)ay
with
1/2
_ 2.2 ou q2 oW q2 8u ouw
(7.4) vt = F71 [[ 3y ] . [ By ] + 2 5 5; cosA ]

The mixing length is expressed by the same formula as in two-dimensional flow :

1. —X __ Y 2
(7.53) t = 0.085 tanh [ 5355 ¥ ] X = 0.41
and the viscous damping function is given by :
1 2 2 172 <172
(7.5b) F =1 - exp [ T (('\'tx + th + Zrthtz cosA) o) ]

In compressible flow, this scheme is completed by the heat flux modelling with the
hypothesis of a constant "turbulent PRANOTL number"” :

v
v t oh
(7.86) ¢ =-0 [ PP ] oy
t
P = 0.725 P, = 0.88

t

In the same way, the extension of the classical k-& model in fully turbulent flow
gives :

2 2
Doy kK~ du D0 = Kk~ oW
(7.7) - ku'v'> = Cp c By ’ w'v'> = Cpg 7 57
where k and € are calculated from :
{7.8a) Ok oL, 2 [ & K2 ok ]
. ot dy o, € y
Oe € e? 2 [41] k2 ae
(7. 88) ot " %1 Pk T S % “ oy Lo, e ay )
with
1V gy OW Lo, OW v,y OU
(7.8) P = - <u'v' 3y wiv'> = [ <u'v'> v wiv'> By ] cosa
and
(7.10) Cy = 0.08 C€1 = 1.44 CeZ = 1.92 oy = 1 0, = 1.3

Among the various problems encountered in the turbulence modelling of three-
dimensional boundary layer, the near wall treatment is one which is difficult to solve.
In two-dimensional flow, all the models are based, explicitly or implicitly, on the
existence of the law of the wall. This leads to express the turbulent shear stress in
the near wall turbulent region (the logarithmic region) as :

(7.11) - cutv> = a2 [ %! ]2
: y
This formulation is accepted, at least, with moderate pressure gradient.

In three-dimensional, the opposite reasoning is done because the starting point is

the assumption that the +three-dimensional counterpart of (7.11) is valid. This is
Clearly what is done with the mixing length model (7.4). This is also the case of the (k-
€) model ; indeed, in the near wall turbulent region, the classical approximations

reduce this model to :

(7.12a) P=c .
2 2

7. & _ 8,8 r fuk”deq .

(7.12p) Cor PR Cea it By [ . ¢ By ] 0

o



From these equations, we deduce :

3/2
2 e
{7.13a) e=ck ; C2'o(cc-c )
y € €2 el
o cuty'y = SO /23U . cw'y'y =SB 172 W
(7.13b) <u'v'> c k y 3y H <w'v's T k y 3y
LS 1/2
(7.13¢c) oK " [of7]
3/4 72 2 2 aW 3
. cp 2 [[ 2] [2v] LI TR
(7.13d} 'r-e[ C y 3y *Lay * 2 By vy °°°
with L 1/2
T =90 [ <u'v‘>2 + <w'v'>2 + 2 <u'v'> <w'v'> cosA ] /
Then, by wusing the momentum equations, it is possible to deduce a “three-

dimensional law of the wall" which results from the hypothesis of a mixing Zlength
formula.

As already said in § 5.3., an asymptotic analysis of the “three-dimensional
turbulent boundary layer has been performed by GOLDB8ERG-RESHOTKO, 1984. They found that
the direction of the velocity is constant in the inner 1layer, At very large REYNOLDS
numbers, this result is certainly true but the experimental results show that the
velocity direction can vary very rapidly near the wall,.

In spite of these restrictions, most of the available methods use the hypotheses
which have been described above. These methods produce satisfactory results, at least
for the mean flow.

This does not mean, however, that the turbulence modelling problem in three-
dimensional turbulent boundary laver is solved because experimental data show that
several hypotheses presented above are wrong. The experimental data of Van den B8ERG et
al, 1975, and of BRADSHAW-PONTIKOS, 1985, show that the three-dimensionality of the flow
affects the turbulence structure. These experiments deal with a boundary layer
developing on an "infinite” swept wing and the experimental set wup 1is such that the
initial boundary layer is nearly two-dimensional ; downstream, the flow becomes three-
dimensional due to the combination of the effect of an adverse pressure gradient and of
the sweep angle. As the three-dimensionality develops, the experimental results show

that the outer level of the mixing length reduces and the ratio <t/k decreases (fig.
7.3). Therefore, there is a significant decrease 1in the magnitude of shear stress
compared with an equivalent two-dimensional boundary layer. In addition, the direction
of the shear stress vector T (- <u'v'>, - <w'v'>) lags considerably behind the vector
of components (8U/dy, OW/dy) : this means that the eddy viscosity is not isotropic.
1
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Fig. 7.3a - Boundary layer on an infinite swept wing Fig. 7.3b - Evolution of the ratio of shear stress
(from ELSENAAR-BOELSMA) - Evolution of and turbulent energy
the mixing length '

Therefore, the classical turbulence models do not represent the ~ﬁhysics of the
phenomena, This is not at variance with the fact that the associated calculation methods
are able to reproduce the mean flow with a certain success. In fact, if we _consider the
Van den BERG et al experiment, the flow is pressure driven and the turbulence model 1is
not too much important. Nevertheless, many endeavours have been devoted” to elaborate
models that remove the hypothesis of isotropic eddy viscosity but serious numerical
difficulties in the calculations of Van den BERG et al experiment (in the direct mode)
due to the problem of singularity have prevented a correct discussion of the turbulence
modelling : this has been shown by COUSTEIX, 1982 and has been discussed in § 6.3..
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Again, it is important to stress that it is dangerous to calibrate a turbulence model by
trying to calculate a separated boundary layer in the direct mode. We have shown (§ 6€.3)
that the application of a simple integral method (in the inverse mode) to the Van den
BERG et al experiment leads to quite reasonable results. Later, ABID-SCHMITT, 1984,
examined a few turbulence models by solving the 1local differential equations in the
inverse mode. Comparisons with Van den BERG et al results show that the mean flow is
little affected by the turbulence model. The standard k-&¢ model gives a rather good
agreement with experiments ; the mean flow prediction is only slightly improved by wusing
an algebraic stress model developed by RO0I and LAUNDER (see for example the 1980-1981
STANFORD Conference, KLINE et al). It is probable that this is due to the fact that the
flow is pressure driven. To illustrate this point, fig. 7.4 shows the evolution of the
slope of the polar plot in the outer part of the boundary layer. On one hand, this slope
can be obtained from experiment ; if we assume that the polar plot is 1linear in the
whole boundary layer

W u
= C [1 -L—]
e e
we deduce :
&
{7.14a) c = -3 _

On the other hand, we can calculate this slope from inviscid considerations (SQUIRE-
WINTER formula). A simplified form gives :

(7.14b) C = 2x - wg)

where (o - uo) represents the turning angle of the external streamlines and xg the
starting point. By adjusting the value of x5, a good correlation is obtained between
(7.14a) and (7.14b) {(fig. 7.3). The same has been observed by BRADSHAW-PONTIKOS, 1985,
and these authors argued that such a good agreement is partly a coincidence because the
entrainment into the boundary layer is neglected but they think that it is certainly an
indication that the flow is pressure driven. Obviously, this is not true near the wall
and, in this region, the turbulence model is important.

A 2(x-oio}
as+

Fig. 7.4 - Caleulation of the slope of the polar plot in the outer part of the boundary
layer - Experiments : Van den BERG et al

Among the various attempts at improving the classical models, let us mention the
approach proposed by ROTTA, 1979, who tried to reproduce the anisotropy of the eddy
viscosity as evidenced by the Van den BERG et al experiments. In a cartesian axis-

system, this model is :

ey oy oW
(7.15a) - <utvy s vy [aXX 3y * %xz 3y ]
ou ‘ouW
7.15b - ‘v! = = Eve
(7.15b) wivty o= vy [azx v ' %2z By ]
. . u? + W
XX UZ . NZ -
Uw
a = a = {1 -7
XZ ZX UZ . w2
.. 02+ Wl
b4 2 2
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In the above equations, T is a constant which represents the ratio of transverse
and longitudinal eddy viscosities expressed in an axis system based on the 1local
boundary layer velocity. This model is able to reproduce the non isotropy of the eddy
viscosity if T # 1. A first drawback is that T is not a universal constant, A second
drawback is that T depends on the axis system because the model is not invariant by a
galilean transformation.

Fig. 7.5 shows an example of applications of.a few models to the BRADSHAW-TERRELL,
1969, experiments. These authors studied the relaxation of a three-dimensional boundary
layer towards a two-dimensional boundary layer. The mixing length model and the k-¢
model {with T = 1) give the correct decay of the wall 1limiting streamlines angle ﬂo
whereas the integral method underpredicts the rate of decay of B at the beginning of
the relaxation. This illustrates the greater flexibility of the solution of local
equations. In addition, this comparison shows that the «classical models work well in
this situation. Indeed, results not given here, show that if T is given a value
different from T = t, the rate of decay of ﬂo is not well predicted ; if T < t, the rate
of decay of ﬂo is too low.

E, (0]

Fig. 7.5 - Calculation of BRADSHAW-TERRELL experiments (45° infinite swept wing) :
relaxation of an initially three-dimensional boundary layer towards a two-
dimensional boundary layer - x’: distance from leading edge along tunnel
centerline - B ! crossflow angle at surface - mixing length -
weme k-g —— = integral method

Another illustration is provided by the calculation of the wake developing behind a
swept wing (COUSTEIX-AUPOIX-PAILHAS, 1980). The calculations have been performed by
using a four-equation model : the eddy wviscosity model is replaced by transport
equations to calculate the shear stress - <u'w'> and - <w'v'>., In this model, the effect
of the parameter T is included in the production terms. As shown in figure 7.6, the best
results are obtained with T = 1. A lower value of T produces a too low rate of decay of
the crossflow. This ‘confirms the results obtained with the application to BRADSHAW-
TERRELL experiments. However, it should not be concluded -that the isotropic eddy
viscosity model always gives the best results since experimental results show that the
departure from isotropic eddy wviscosity is important as the three-dimensionality
develops along the flow. )
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.
XU 7 X
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a0 [P . s il_l»
* 10 0 100 Ymm

Pig, 7.6 - Crossflow velocity profile in a wake behind a swept wing - Exp. : e ; Cale. rLk-e~uv"-w'v7' model
T=1; cmn T=0.5
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Another possible solution to the modelling problem is to wuse a full transport

equation model for the REYNOLDS stresses. In a cartesian axis system, these equations
are :
D= Cuiu'> = P, . + & . - D._. + T,
ot i3 i3 i3 ij ij
where Pij is the so-called production term :
du Bui
ig = - <uluk> 5;1 = <ujuk> I
k k
where ‘ij' Dy, Ti are respectively the velocity pressure correlations, the destruction
term and” the Eransgott term.

According to the modelling proposed by LAUNDER et al (see for example the 1980~-1881
STANFORD Conference, KLINE et al), these terms are given by

3 ey kO 9na
Tig = Cs ax, L Al'as S %,y Wiy’ ]

2
Pi5 =3 ¢ 84
*i3 % i1t tig2 t tigw
and ’
e - 2
L T [ ujul> - 3 bijk]
¢, ==-c [e._-Ls 0 ]
ij.2 2 ij 3 ij kk
¢ = [ec [ <u/u'> n n & -2 wuls non, - 2 cululy non, ]
ij,W 1 K K 'm kK mij 2 ki k'3 2 k™3 K1
. 3 3
* o [t 2" i " 7 tik,z ™5 T 2 *fak.z ™ 1 f
. 372
2.5ex
n

where n;, are the components of a unit vector normal to the surface and X is the normal
distance from the wall,

*If the boundary layer approximation are applied, the transport equations are
simplified because the velocity gradient components other than dU/dy and OdW/dy are
neglected. Calculations with a model of this type (with ‘ijw = 0) have been performed by
COUSTEIX-AUPOIX-PAILHAS, 1980, The results have shown that this model is not sufficient
to explain a departure from the isotropic eddy viscosity.

The modelling of transport equations is often simplified ¢to give the so-called
algebraic stress model which also leads to an isotropic eddy viscosity. This model 1is
obtained with the following approximations :

<u‘iu’.> <uiu’>

D Q0 3 DK i3 2
—_ <uU.u.> - R — - T e—— - £ o L. - = 0,
Dt u1u3> le k Dt Tkk K (e el Plj * ’13 3 6135
where P = P, /2 is the production rate of k.
From these equations, we get :
P L
(1 -co| X1 _-25 B}, 1.4
2 2 € 3 ij e €
<uiuﬂ> e 5. .k + )
J 13 C, + — -1
1 €

If the velocity gradient components other than dU/dy and 3W/dy are neglected, we get :

3 .
. c, Lr-Fe,¢1 -1 5
<u'v > = 3 3 E <v > 5; =
A R AT
3 .
. c, Lr-5¢¢] -0 2. 3w
<w'v'> = ) 3 - <V )—a';
c. + 2 2y
1 € 2 1
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Then., these expressions give an isotropic eddy viscosity. Calculations performed by
ABID-SCHMITT, 1984, have shown that this model works well when applied to the Van den
BERG et al experiments. The good agreement results probably from a reduction in the net
production of REYNOLDS stresses - <u'v'> and - <w'v’'>, but it 1is not <clear if this
result comes from an effect of the three-dimensionality or if a similar effect would be
obtained also in two-dimensional flow.

Possibly, it is not correct to neglect the velocity gradient components other than
dU/dy and 9W/dy. Indeed it is known that small extra rate of strain can strongly affect
the development of REYNOLDS stresses. Now, the three-~dimensionality is characterized by
a curvature of the streamlines and this effect is not taken into account if only 3U/dy
and 3W/dy are retained. This means that practically all the velocity gradient components
should be retained ; it has not yet been shown that this could improve the model.

8 - CONCLU

It is clear that our capacity to predict the three-dimensional turbulent boundary
layers developing on wings or on fuselages is not very large. This is partly a result of
a poor knowledge of the turbulence mechanisms in general. In addition, it should be
recognized that the advanced studies on turbulence deal with rather simple
configurations where the effects of three-dimensionality are avoided. On~the other hand,
the mathematical tools to model the effects of turbulence are rudimentary.

For attached three-dimensional boundary layers, the situation is not too bad
however. Several calculation methods have been developed and widely applied. The
earliest techniques solve the global equations and these integral methods have been
shown to be a very valuable tool for practical purposes. Solutions of local equations
have been developed more recently. Even with simple eddy viscosity models, they add a
degree of flexibility and are able to reproduce the mean velocity profiles with
reasonable accuracy. The REYNOLDS stress transport equations are potentially superior,
but this advantage has not been clearly proven yet. The current tendengy is to prefer
the use of the so-called algebraic¢ stress model instead of the full REYNOLDS stress
equations.

This optimistic aspect should not hide that many problems remain unsolved. One of
them is the near wall treatment and the associated difficulty of the extension of the
law of the wall in three-dimensional boundary layer.

The major problem is the three-dimensional separation. Very often, a three-
dimensional separation is associated with an increasing three-dimensionality of the flow
and we have seen that this affects the structure of turbulence. Fortunately, the mean
flow is generally pressure driven and a very accurate turbulence model is probably not
needed, but this point is not completely clear because other factors such as variations
of pressure normally to the wall are important, A recent positive result is that
singularities occurring in boundary " layer calculations are now slightly better
understood, but the link with separation is hypothetical. At the best, the singularity
is arsign for the need of a strong coupling between the boundary laver and the inviscid
flow.

In the case of attached boundary layers, techniques of interaction between the
viscous and inviscid flows are well appropriate to calculate the whole flow field. In
the case of separated boundary layers, the advantage of these interactive techniques
tends to disappear. If the separated zone is developed, the classical boundary layer
approximations are no longer wvalid. In particular, the component of the pressure
gradient normal to the wall is not negligible. In addition, a separation in a three-
dimensional flow often leads to a formation of vortices in which it is very difficult to
recognize a familiar boundary layer.

In two-dimensional flow, other techniques than viscous-inviscid interactions have
proved fruitful. These methods consist of solving the so-called parabolized NAVIER-
STOKES equations or thin layer equations {RUBIN-REDDY, 1983). These techniques can be
considered as an extension of classical boundary layer solutions that include the direct
and inverse methods ; in addition, the effects of the normal pressure gradient are taken
into account. The extension to three-dimensional flow deserves to be considered.

A last problem which should be mentioned is the laminar-turbulent transition. It is
often argued that this transition is unimportant at high REYNOLDS numbers, but this is
not always true. For example, the design of "laminar wings”™ or the presence of
favourable pressure gradients can require an accurate determination of the transition
region. The three-dimensionality adds a further difficulty due to the «crossflow
instability. Experiments on swept wings have shown that this instability can 1lead to
transition in a favourable pressure gradient. Thus, the advantages of the properties of
a laminar airfoil at zero sweep angle can be lost when the sweep angle increases. Then,
methods for calculating transition in three-dimensional flow are being developed as they
should be a tool of aerodynamic design (ARNAL, 1986).

e
P
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APPENOTX

CLOSUR ELATIONSHIPS USED IN THE INTEGRAL METHO

A.1. Closure relationships jip laminar flow

In compressible flow, intermediate transformed variables have been introduced
petween these variables, we have the same closure relationships as between variables in
incompressible flow. The transformed variables are noted with an overbar (" ). The
closure relationships given below are valid for H € 4.0283 ; they are given in a stream-
line coordinate system :

—_% —_

+ 12106 12221 . _ 4 5022 [Z- —h ]+ 3e2
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12.37 (4.02923)2
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A.2. Closure relationships in turbulent flow

The «closure relationships are expressed in a streamline coordinate system.
“Incompressible” thicknesses are defined as :

5 u 5 u u 61i
b= [1-2Tay T e R KT Ho= g
o e 0 e e 111
5 w 5 w_ u 6w [ u ] 5 w2
5, = j - —dyy8,_,. = j -~ — — dy; 08 _. = j -_— 1 -=— 1 dy;8,__. = J - ~— dy
Vi /’ ?
21 o ug 21i o ug ug 121 0 Ye u, 221 o uz
The relationships for the "incompressible” or transformed variables are :
5. . Cf y1/2
1i - 1 — X 1 1 —_ * —_
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1 i 1-65 2 3 0.41 8 E
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*
0 = 1.740746G + 29.693/6 - 12
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The relationships for the compressible variables are :
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PHYSICS AND MODELLING OF THREE-DIMENSIONAL BOUNDARY LAYERS
by

P.Bradshaw
Department of Aeronautics, Imperial College
Prince Consort Road
London SW7 2BY
United Kingdom

SUMMARY

This section of the course is an introduction to the physics of
three-dimensional (3D) turbulent flows and a discussion of "modelling®” - the use of
experimental data in developing calculation methods. Only conventional
Reynolds-averaged calculation methods will be discussed: for simplicity, only
"differential™ methods, in which variables are predicted at each point in the
boundary layer, will be treated, but similar principles should apply to "integral”
methods. -

1.0 INTRODUCTION

The term "Three-dimensional boundary layers" is taken to include flows such as
wakes or jets - which obey a 3D version of the boundary 1layer approximation even
though they are not layers on boundaries - and "slender" flows, such as those in
wing/body junctions (Figs. 1 and 2), which grow slowly in the streamwise direction
even though they do not obey the 3D boundary layer approximation completely. In 3D
flow with the X axis in the general direction of motion, e.g. along the centre line
of an aircraft or a duct, the W-component motion, and the associated V-component
motion, are called "secondary" flow, as distinct from the "primary" £flow in the X
direction. oOur theme, therefore, is the generation of "secondary" motion in boundary
layers and other 3D turbulent flows. We exclude highly three dimensional flows with
massive separations, such as those behind bluff bodies.

Even within this restricted class, corresponding roughly to the different
sub-regions of flow over an aircraft, a bewilderingly large variety of flow
geometries can appear. Since, as usual, the number of flow phenomena is much smaller
than the number of hardware configurations, we restrict ourselves to a deneral
discussion of physical principles and do not consider particular aerospace
geometries. '

As always in turbulence studies intended for engineering application, the main
question 1s “"what do the Reynolds stresses do, and why?" Strictly, the effect of
turbulent velocity fluctuations in a fluid flow 1is to provide an extra rate of
momentum transfer, in addition to the convection of momentum by the mean flow and the
di'ffusion of momentum by collisions between molecules. However, just as momentum
transfer by molecular collisions is commonly regarded as equivalent to internal
viscous stresses, turbulent momentum transfer 1is equated to extra (Reynolds)
stresses. Since the Navier-Stokes eguations represent Newton’s second law of motion
"rate of change of momentum egquals applied force" for a viscous fluid, the
mathematical process of transferring the velocity-fluctuation terms from the  left
hand side of the equation to the right hand side 1is exactly equivalent to
interpreting the extra rates of momentum transfer as an extra stress (force per unit
area).

The Reynolds stresses are extra unknowns in the time-averaged equations of
motion for the rate of change of velocity, and although we c¢an use the original
t ime~dependent equations of motion to deduce equations for the rates of change of the
Reynolds stresses, the latter equations contain extra unknowns, and an infinite
series of higher-order time-averaged equations would be required to contain all the
information provided by the original time-dependent Navier-Stokes equations.
Therefore, experimental data or other sources of inspiration must be used to truncate
the series, The current approach is to model the terms on the right hand side of the
Reynolds-stress "transport" equations as functions of (i) the Reynolds stresses
themselves, (ii) the mean velocity gradients, and (iii) one or more length scales of
the turbulent eddies, which obey independently-determined equations.

Turbulence is essentially -three-dimensional, in the sense that the fluctuating
parts of all three velocity components are of the same order, and it might be thought
that the essential processes of turbulence development would be unaffected by mild
three-dimensionality of the mean flow. This is, indeed, the principle on which most
turbulence models initially developed for two-dimensional mean Tlows have been
extended to 3D flows. However, over the last ten years it has become clear that
apparently-plausible extensions of 2D models do not give very good agreement with 3D
experiments, such as those of van den Berg and collaborators at NLR (Refn 1) on a
slightly-idealized swept wing boundary layer. Predictions of secondary flow in
non-circular ducts (Fig. 3) or outside long non-circular bodies (such as the ship
hull in Fig. 4) are also in a less than satisfactory state; in these cases, the flow
in the cross-sectional plane is actually generated by the Reynolds stresses. 1In
particular, it can be shown that an isotropic "eddy viscosity", such as is used in
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the simpler calculation methods, is essentially unable to predict stress-induced
secondary flow.

The only alternative to modelling of the Reynolds stresses for substitution into
time-averaged equations is solution of the time-dependent Navier-Stokes equations for
the mean and fluctuating motion. Even if the smallest-scale turbulent eddies are
modelled, the computing times required are so¢ large that this 1s at present an
approach for basic research work rather than day-to-day industrial use. However,
time-dependent turbulent simulations of 3D flows are about to start, and should
materially improve our understanding in the near future.

2.0 PHYSICS OF 3D FLOWS
2.1 Classification

Many years ago, Prandtl (Ref. 2) identified two main kinds of "secondary flow" -
that 1is, velocity components in a shear 1layer at right angles to the main flow
direction. By far the most important of these, called the "first kind of secondary
flow", occurs because a given spanwise pressure gradient, applied to a boundary layer
or other shear layer, will deflect the slow-moving fluid in the shear layer more
strongly than it deflects the free-stream fluid. Therefore, a "crossflow" velocity
component arises, as shown in Fig. 5. As we shall see below, the mechanism by which
this crossflow is generated is essentially inviscid - assuming that viscous or
turbulent stresses have generated a shear layer in the first place - and in fact this
kind of crossflow tends to be reduced by viscous or turbulent stresses in the
crossflow plane (the ¥Y-Z plane in Fig. 5). An obvious example of this reduction is
that the crossflow velocity falls smoothly to zero at the surface: the so-called
"no-slip" condition requires-W=0 as well as U=0 at the surface, and a secondary
internal boundary layer 1is set up, as shown in Fig. 6(b), in which the spanwise
component shear stress acts to smooth out the velocity profile. Note the use of
streamline coordinates to show up departures of flow direction from that in the
external flow. Clearly, if the crossflow velocity w is greater than Zero, as in most
of the examples 1in this section of the course, then 3w/dy < 0 outside the internal
layer. This description is valid for laminar and for turbulent £flow: note that 1in
either case the internal boundary layer, in which the shear stress and total pressure
are perturbed, may be very much thinner than the boundary layer as a whole. It is
convenient to consider what happens when an initially two-dimensional 1laminar or
turbulent boundary layer suddenly runs into a region of spanwise pressure gradient -
a simple example is the flow in a square duct, with a thin boundary layer on the
floor, as it encounters a smoothly-radiused bend as shown in plan view in Fig. 5. 1If
the flow 1is 1laminar, the streamwise flow and the crossflow (outside the internal
layer) can in certain circumstances be regarded as independent, but in turbulent flow
the generation of mean crossflow leads to changes in all the Reynolds stresses, even
in the outer part of the boundary layer. The main theme of this series of lectures
is the prediction of turbulent (Reynolds) stresses in such three-dimensional flows.

' Prandtl’s "secondary flow of the second kind™ occurs only in the turbulent case,
where Reynolds stresses can create a crossflow. The simplest example is a straight
rectangular duct (Fig. 3), with, say, fairly thin boundary layers on the walls, in
which the Reynolds-—stress gradients that appear near the corner actually drive the
secondary . flow. Since one normally expects viscous or turbulent stresses to smooth
out, rather than to cause, changes in velocity, secondary flow of the second kind 1is
an unexpected and fascinating phenomenon. The large amount of attention that has
been paid to it is more nearly proportional to its fascination than to its practical
importance, which 1is really rather small. In most practical cases, square ducts or
other "corner" flows contain bends or other changes in direction which generate
secondary flows of the first kind, generally overwhelming secondary flows of the
second kind. Of course, secondary flows of the second kind provide a very severe
test case for a turbulence model for three-dimensional flow. However, in the present
state of turbulence studies a turbulence model (i.e. a calculation method) is
unlikely to be applicable to all kinds of flows: therefore models ought to be
adjusted for optimum performance in the more common secondary flows of the first
kind, and if necessary optimised separately for secondary flows of the second kind.

The secondary flow which is set up by centrifugal instability or buoyant
instability - such as longitudinal Taylor-G¥rtler vortices in a boundary layer over a
concave surface (Ref. 3), the vortex rolls that 1lead to cloud streets in an
unstably-buoyant atmosphere (Ref. 4), or the wind-rows that form on the ocean surface
(Ref. 5) - might be called "secondary flow of the third kind" but we will not discuss
it further in the present lecture series,

As well as distinguishing two main mechanisms for the generation of "secondary
flow", we have to consider two main configurations. We recall that the "boundary
layer approximation® (which is also applicable to jets and wakes) rests upon rates of
change in the streamwise direction being small - compared to rates of change in the
direction normal to the surface in a boundary layer or normal to the plane of the
shear layer in a nominally two-dimensional jet or wake. In 3D flow, we need to
distinguish cases 1in which the rates of change in the spanwise direction are small
and cases in which they are not. If we consider the boundary layer on a swept-back
wing, far from root or tip (Fig. 1), we see that if the sweep angle is of the order
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of 45? spanwise rates of change are of the same order as streamwise rates of change,
and are therefore small compared to rates of change normal to the surface of the
wing. Therefore, the arguments which are used to derive the boundary layer equations
in two dimensional flow, where we have to consider only the U-component of momentum,
can be extended to three-dimensional flow and applied to the W-component momentum
equation as well. The two key results are that, as in two dimensions, the pressure
within the shear layer differs negligibly from the pressure just outside the shear
layer and can, accordingly, be regarded as "known" from a solution for the external
flow, and that spanwise diffusion of momentum by viscous or turbulence stresses can
be neglected, just as streamwise diffusion is neglected in the 2D - and 3D - cases.

Let us use the notation that 7t,. represents the total (viscous plus turbulent)
stress acting in the X, direction oh’a plane normal to the X. direction - so that T
represents the usuall2p shear stress acting in the x direcgion on a plane normal £3
the y direction. Then the effect of applying the 3D version of the boundary-layer
approximation is to reduce the X-component and Z-component time— averaged
Navier-Stokes equations (sometimes called the Reynolds equations) from

. T 9T 3T
D_UEUB_U+V3_U+W3_U=_A§E+.J: XX 4 Y o X (1)
Dt X Y 7 p 9x p 3xX 3y 8z _
3T 3T T .
DW _UW  V3W WoW _ _13p, 1 |%ex, “ay °Tzz L2l
Dt X Y 32 p dz o] 9X Y 3z |
to
DU 10 . 1 9% (3)
oV - _ L P, 2 XY
Dt p 3X p 3y
9T !
DW _ _13p, 1% ay (4)
Dt p 32 p Y
where we use the transport operator D/Dt for compactness. We see that only Y

derivatives of stresses remain, these being large compared to the X and Z derivatives
of any stress. 1In the general case we have
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Note that although our main concern is with turbulent flow, the viscous-stress terms
may be easier to follow. Thin, slowly-growing three-dimensional shear flows that obey
the boundary layer approximation are sometimes called "boundary sheets": here we
prefer "3D thin shear layers", because Egs.{(3 and 4) apply to wakes (though not to
trailing vortices) as well as boundary layers.

The boundary-layer assumption implies that the V-component velocity (normal to
the surface) is small compared to U and W. Near the root or tip of a swept wing, for
example, spanwise rates of change are Jlarge and, more or less as a direct
consequence, V becomes of the same order as W, perhaps with both small compared with
U. At this point, we need to generalize the concept of "crossflow" into the concept
of "longitudinal vorticity". Formally the vorticity vector is the <curl of the
velocity vector, so that in conventional X, Y, Z axes we have
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In what we have called "3D thin shear layers", 93V/32z has been small compared to
3W/dY, but these two constituents of the longitudinal vorticity are of the same order
in flows near the root and tip of a swept wing, in the trailing vortices behind the
aircraft, or near the <corners of a rectangular duct: we call these "slender shear
flows"., By taking the Y derivative of the Z-component Navier-Stokes eguation we can
dirive an equation for 3W/dY, and a similar equation can be derived for 3dV/3z. A term
d°p/dYd2 appears in each equation. Combining the two, we derive an equation for the

X-component vorticity itself, '
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The azp/ayaz terms cancel exactly: note that pressure gradients in the (Y-2) plane
are not negligible in the momentum equations in “"slender" flows. The vorticity
transport equation {(8) implies that, in the absence of viscous or turbulent stresses,
vortex lines remain locked to the same elements of fluid, but their vorticity will be
modified by the "skewing" terms (second and third on the right) and the first,
"stretching", term, A stimulating review of vorticity dynamics has been given
recently by Morton (Ref. 6).

The final, general, form of the vorticity equation necessarily contains the
mechanisms of generation of secondary flow of the first (skew-induced) kind and the
second (stress-induced) kind: in our chosen axes, the main generation term for
secondary flow of the first kind is the third term on the right of equation (X),
since weé suppose that the initial vorticity is mainly in the 2 direction so that w
and w are small. Stress-induced secondary flow 1is generated by the secon
derivatives of Reynolds stresses, which are generally all of the same order. The
only simplification that we can usually make in "slender" flows like those near the
root or tip of a swept wing is that X derivatives are small compared to Y or 2
derivatives, but the latter two are of the same order.

Some skew-induced secondary flows are so strongly deflected that a discrete
vortex is formed within the shear layer, with 3W/dY and av/3Z of the same-order. The
best known examples are flows round obstacles in boundary layers, such as wing-body
junction flows (Fig. 2) which are becoming increasingly important as aircraft shapes
become more slender. Fig. 2 shows the distortion of elementary vortex lines and
their accumulation into a "horseshoe" vortex wrapped round the leading edge. Mehta
(Ref. 7) has shown that the ratio of 1leading-edge radius of curvature to body
boundary-layer thickness has a large effect on the flow pattern: in the case of a
sharp leading edge the horseshoe vortex is relatively weak. We expect that viscous
or turbulent stresses will generally act to reduce the crossflow velocities. As has
been shown 1in the recent experiments of Kornilov and Kharitonov (Ref. 8), and of
Nakayama and Rahai (Ref. 9), stress-induced secondary flow will eventually take over,
far enough downstream of the leading edge, leading to a pair of longitudinal vortices
in each corner as shown (for a duct flow) in Fig. 3. However, the distance required
for stress-induced secondary flow to take over is many times the chord of a typical
wing, and the usual situation at a wing trailing edge is that a pair of vortices (one
per corner) is dumped into the body boundary layer and continues to transport wing
boundary-layer fluid towards the body.

Probably the most spectacular occasion on which thin shear layers roll up into
quasi-longitudinal vortices is on the lee side of a body - for example a delta wing -
at incidence. The topology of the surface streamlines in a separating flow is itself
an interesting study: an extensive review is given by Tobak & Peake (Ref. 10), and
discussions of topology by Hunt et al. (Ref. 11) and Hornung & Perry (Ref. 12). The
general introduction to vorticity and 3D separation by Lighthill in Ref. 13 is also
still useful. Qualitatively at least, the flow in the crossflow plane over a slender
body of revolution corresponds to impulsively-started two-dimensional flow over a
spanwise circular cylinder, with separation occurring just downstream of the
"equator™: at fairly small body incidences, a symmetrical vortex pair is formed,
although, at sufficiently large incidence,vortices are shed alternately from each side
of the body so that the flow in the crossflow plane looks rather like the traditional
Karman vortex street. In any case, crossflow vorticity generated in a thin shear
layer rolls up into a nearly-concentrated vortex, imbedded in the boundary layer if
the incidence is small and effectively distinct from it if the incidence is large.

Three main imbedded-vortex configurations need to be considered (Fig. 8). The
first is an isolated vortex imbedded in a turbulent boundary layer; the second is a
vortex pair with the "common" flow between the vortices directed downwards towards
the surface, as in the flow on the lee side of a body of revolution (Fig. 7) or
downstream of a wing/body Jjunction; and the third is the case where the common flow
between the vortices is upwards, so that their common induced velocity convects them
slowly away from the surface, entraining boundary-layer fluid as they go. This last
case appears in the flow out of an S-bend engine intake or a wind-tunnel contraction
(Ref. 14), and in both cases causes a large and unwelcome eruption of shear-layer
fluid into the main flow. Flow over surface-mounted bluff bodies results in
imbedding of nearly.~longitudinal vortices in free shear layers and boundary layers
(e.g. Ref. 15). A comparatively simple flow is that over a surface-mounted body with
a streamlined nose and a blunt base, such as the "half-bullet" shape tested in Ref.
16. This is a 3D equivalent of the popular 2D backward- fac1ng step (see Ref. 17 for a
review of the latter).

A characteristic feature of strong longitudinal vortices is that the turbulence
near the axis is damped out by the effect of "centrifugal forces", according to the
Rayleigh criterion for flows with angular momentum increasing outwards. Centrifugal
stabilization has spectacular effects in the trailing vortices far behind aircraft,
and the lack of radial mixing can result in quite large longitudinal velocities being
induced by pressure gradient. The phenomenon is well understood gqualitatively, but
presents a considerable quantitative challenge to turbulence modelling.



2.2 Transition mechanisms in three dimensional flow

"This 1is an introduction to a subject to be discussed in later lectures. In two
dimensional laminar boundary layers, the usual mechanism of transition in flows with
small external turbulence level is the growth of Tollmien-Schlichting waves, which
are, essentially, alternating regions of high and low spanwise vorticity. As is well
known, Tollmien-Schlichting waves grow morezrapidly if the velocity profile has a
point of inflexion (i.e. a point where 3%u/dy = 0). In 3p flows, there 1is,
necessarily, a point of inflexion' in the crossflow velocity profile (Fig. 6) and the
"inflexion-point instability" leads to the generation of longitudinal vortices with
their axes near the point of inflexion. Fig. 9 shows the Z-component velocity
profiles obtained for several different orientations of the axes, showing that
inflexions occur over a range of axes. C(Correspondingly, vortices with a range of
directions in plan view can be generated, but in practice the most noticeable are
those which hdve zero net crossflow velocity at the inflexion point (the large cross
in Fig. 9) so that the vortex pattern appears fixed in space. In practice the pattern
will be locked in position by spanwise irregularities in the oncoming flow
Longitudinal vortex "streaks" are evident in many flow-visualization pictures of flow
over swept wings (as sketched in Fig. 10, after Fig. 9.20 of Ref. 13) or over
rotating discs. Recent computational work by Hall (Ref. 18) has shown that the
longitudinal-vortex mode of "crossflow instability" easily overwhelms Taylor-Gortler
instability on concave surfaces, just as either easily overwhelms the very slowly
growing viscous~generated Tollmien-Schlichting mode. As usual with transition
prediction, there is a large gap between nominally-accurate calculations for the rate
of growth of small disturbances, and empirical results for the onset of turbulent
flow. Cebeci and collaborators have compared experiments and detailed stability
calculations for three dimensional flows, and shown 4Bhat the onset of transitiog
occurs after an amplification of as much as e compared to the traditional e
amplification factor of 2D Tollmien-Schlichting waves.

On strongly swept-back wings, the mechanism of transition is commonly
"transverse contamination", in which flow along the leading edge of the swept wing
transports and propagates turbulence from the body boundary layer out along the wing,
rendering any discussion of transition mechanisms downstream of the leading edge
irrelevant. Fortunately, there is a fairly simple empirical criterion for "spanwise
contamination": it does not occur if the momentum-thickness Reynolds number of the
leading edge boundary layer is less than about 100.

Since instability occurs sooner when either the axial or crossflow velocity
component has a point of inflexion, there is, or ought to be, considerable interest
in lateral contamination of a laminar boundary layer from turbulence generated in
streamwise corners, longitudinal vortices, or other flows which contain points of
inflexion over only a limited spanwise distance. The state of the art appears to be
the empirical observation that spanwise contamination occurs at about the same rate
aio transverse contamination from turbulent spots - that is, at a half-angle of about
15 B

2.3 Generation of crossflow by pressure gradient
The Squire-Winter-Hawthorne (SWH) inviscid secondary flow formula is a special
case of the vorticity egquation (8) in which all viscous and Reynolds stresses are
negligible and the initial vorticity vector is in the spanwise direction sow_ = W =
0.. Eq.(8) therefore reduces to X b4
3%~ Yz 3z T Yz 3% (8a)
which indicates that the initial, spanwise, vorticity vector skews (to the left, say)
at the same rate at which the velocity vector skews to the right. That 1is, the
angle of the vorticity vector to the velocity vector changes by twice as much as the
flow direction, if the flow deflection is small. Now in x, y, 2 axes aligned with the
external streamline, the cross-stream component of vorticity is approximately -3u/dy
and the streamwise component 3w/dy. Therefore the slope of the outer portion of the
velocity profile in the polar plot of Fig. 12, dw/du = (dw/dy) / (du/dy) 1is, to a
first approximation, simply (minus) twice the angle through which the velocity vector

has turned.

awx U oW

A semi-graphical proof of the SWH relation is to note from Fig. 11(a) that the
decrease of pressure towards the centre of curvature (shown in Fig. 5) implies an
increase in velocity according to Bernoulli’s equation: in fact Ur = constant. Thus
a fluid element at E, initially lying along AB, will be convected, in a time 8t say,
to the point E°, and will then lie along CD. The difference in lengths of the arcs AC
and BD is §t times the difference in velocity across the width of the duct, which is
to a first approximation proportional to (minus) the difference in radius. It follows
that the angle between AB and CD is equal to the "turning angle® AOE’. In Fig. 11(b)
the fluid element is replaced by the vorticity vector, which, we recall, is
permanently locked to a fluid element in the absence of viscous_-or turbulent
diffusion. The vorticity vector is skewed, without radial stretching,to lie along
CD: the>vector CP then has a component PQ in the original direction of flow, but a
component PR, twice as large, in the local flow direction which is normal to the
radial line CRr. =

There are two reasons for departures of real velocity profiles from this simple
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linear formula - (i) that the formula applies only to small turning angles, and (ii)
that the effects of Reynolds~stress gradients opposing the secondary flow have been
neglected. Nevertheless, the SWH formula provides a surprisingly good description of
the outer layer of 3D turbulent boundary layers, especially those dgenerated when a
well-developed 2D boundary layer encounters a spanwWise pressure gradient. From
the viewpoint of predicting 3D flows this is a good thing, but it implies that, at
least in some cases, a comparison of predictions with mean-flow measurements alone
may not be a significant test of the Reynolds-stress model in the outer layer. That
is, turbulence measurements are needed. This kind of flow, with an
essentially-inviscid outer layer, is typical of flows around obstacles such as
wing-body junctions: of course, the SWH formula in its simple form is not valid when
the axial vorticity becomes large, even if the process of generation is essentially
inviscid, but the equations of motion of inviscid rotational flow can still be
integrated numerically in some form (e.g. Ref, 19).

We can now compare the response of a two-dimensional boundary layer to pressure
gradient with that of a three-dimensional boundary layer - for simplicity, one in
which the SWH formula for longitudinal vorticity is qualitatively accurate. 1In 2D
flow, we can write the boundary layer equation as

(aP/as)Q = —(du"v’/3y) (9)

where P is the total pressure, equal to p + (l/2)pu2 in constant density flow, and s
is measured along a streamline, § = constant. This shows that the total pressure on a
given streamline remains constant unless affected by stress gradients. If we
suddenly apply a pressure gradient which is large compared to the pre-existing stress
gradients, the flow near the solid surface 1is constrained by (i) the no-slip
condition at the surface, u=0, (ii) the momentum equation written at the surface,

0 = va2u/ay? - (1/p)3p/3x (10)

which requires that, at the surface, any pressure gradient shall be opposed by an
equal stress gradient. At the surface, of course, the total pressure equals the
static pressure. The development of total pressure and shear stress along a given
streamline (i.e. a given value of stream function ¢) in a 2D flow in adverse pressure
gradient is shown in Fig. 13. Clearly, the effect of the no-slip condition at the
surface gradually propagates outwards, producing a region in which the total pressure
increases according to Eg. 9, the total pressure in the outer layer being constant,
which is the "inviscid flow" approximation. In 3D flow, the response of total
pressure to streamwise pressure gradient is qualitatively the same (Fig. 14): note
that if for example we consider a high-aspect-ratio swept wing, the isobars coincide
with the generators, so streamwise and spanwise pressure gradients are connected. The
quasi-inviscid result for the outer layer 1is of course the skew-induced crossflow

described, for small turning angles, by the SWH secondary flow formula. As already
seen in Fig. 6, the no-slip condition on w in a 3D boundary layer leads to the
generation of an internal layer in which w reduces to zero at the surface. In a

calculation method, the exact relation between "streamwise" and "spanwise" internal
layers depends on the turbulence model,but they are expected to be of about the same
thickness. 1In the flow over the rotating rear part of an axisymmetric body (Fig. 18:
see Ref. 20 for a recent experiment on a partly-rotating body) a w-component internal
layer forms, but there is no direct effect on the axial motion. The 3D equation
corresponding to the total-pressure equation, Eq.(9), is

U (dP/8s) = -udu’v’'/dy - wdv'w'/dy (11)
where U 1is the resultant velocity, and is not so useful.

The effects of pressure gradient on the turbulent stresses in 3D flow is
essentially different from the 2D case. In laminar flow, the imposition of a
crossflow component of mean shear dw/dy immediately produces a shear stress wow/dy.,
but in turbulent flow there is no such close connection between the crossflow
velocity field and the crossflow Reynolds stresses. In 3D thin shear layers we can
define a streamwise component of eddy viscosity as the ratio of the shear stress in
the (x-y) plane, -u'v’, to the corresponding mean velocity gradient 3u/dy_- Jjust as

in 2D flow — and also define a crossflow eddy viscosity as -V w /(3w/dy).
Unfortunately, these two eddy viscosities are not guaranteed to be the same - that
is, the eddy viscosity is not necessarily "isotropic". Experimental results like

those sketched in Fig. 14_ (a) show that although 3u/3dy does not alter to a first
approximation, the value of -u' v’ on a given streamline decreases significantly in
the presence of crossflow, while -v'w’ increases more slowly than 3w/dy. The result
is_that the streamwise eddy viscosity decreases, but the crossflow eddy viscosity,
-v'w /(ow/3dy), 1is even smaller. The slow response of Reynolds stresses to changes
in mean flow is qualitatively obvious from the Reynolds-stress transport equations,
to be discussed below, which state that the rate of change of stress, rather than the
stress itself, depends on the mean velocity gradients. However, the reduction of
u_v_ in response to crossflow - that is, a distortion in a plane normal to that of
-u'v’ - is less easy to explain, even qualitatively.
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2.4 Generation of cross flow by stress gradients

Pioneering experiments performed in the 1930°s, principally by Nikuradse at
G8ttingen, showed that, in long straight non-circular ducts or open channels, V and
W-component velocities could be generated, obviously by Reynolds-stress gradients.
The rather unsatisfactory "explanation™ 1is that three-dimensionality can set up
Reynolds stresses tending to produce 1longitudinal mean vorticity according to
equation (8). The Reynolds-stress terms in the 1longitudinal-vorticity transport
equation are all spatial gradients, so that their integral over a complete
cross-sectional plane of the turbulent flow is 2zero; and it follows that their
contribution to «circulation, defined as the integral of vorticity over a complete
cross-sectional plane, is also zero. That is, these are "diffusion" rather than
"generation" terms. Indeed, we usually find that stress-induced vortices occur as
equal and opposite vortices in, say, the corners of a duct (Fig. 3). Obviously, the
integral of the Reynolds stresses over an area which comprises one of the vortices in
the pair will be non-zero.

Probably the simplest stress-induced secondary flow to understand is that in a
duct with a partly-rough wall (Fig. 16): the direction of secondary flow is away from
the regions of high turbulence intensity. The complicated second derivatives of
Reynolds stresses in Eg. (8) suggest that we cannot expect a simple interpretation in
general, and Morton (Ref. 4) has pointed out that arguments based on angular momentum
are insecure because the axis of reference cannot be chosen rigoro6usly. Another
fairly simple example is the jet from a non-circular nozzle, say a rectangular nozzle
of large aspect ratio. As might be expected, the stress-induced secondary flows
which arise tend to make the cross section circular, but the secondary flows do not
fall to zero as rapidly as the eccentricity of the cross section. The result is that
the cross section "overshoots" the circular shape, so that the jet from a nozzle
which 1s wider than it is high goes through an approximately circular shape and then
forms a jet which is higher than it is wide before finally relaxing back to a
circular asymptotic shape. This is a nice example of the lack of close connection
between turbulence stresses and mean-velocity behaviour. An example of an
exceptionally large effect of stress-induced flows is the wall jet from a circular
nozzle (Fig. 17) which spreads very rapidly in the spanwise direction - several times
faster than it spreads normal to the surface. This flow is discussed by Launder &
Rodi (Ref. 21) but the mechanism is still controversial.

The secondary-flow velocities in stress-induced secondary flow are of the order
of the root-mean-square velocities of the turbulence, whereas the SWH formula implies
that the cross-plane velocities in skew-induced secondary flows are of the order of
the streamwise velocity times the flow deflection angle (radians). 1In strongly
deflected flows, for example that in the wing-body junction of Fig. 2, the deflection
angle is of the order of one radian. This is the essential reason why skew-induced
secondary flows so easily overwhelm stress-induced secondary flows in practice,
however fascinating the latter may be in principle.

The Reynolds-stress transport equations

3.0 MODELLING AND THE USE OF EXPERIMENTAL DATA
1

wWithout prejudice to the approximations that may be made for. engineering
purposes, we begin with the exact transport eguations for Reynolds stress. These
equations can be derived, without approximation, from the Navier-Stokes equations.
They contain further unknowns (time averages of complicated turbulence quantities) on
the rlght -hand side. wWe use tensor notation for compactness, u .being a stress
acting in the x. direction on a plane normal to the x_. direction. Eacﬂ subscript can
take any desired value: if a subscript is repeated inja given term, that term is
summed over all three values of the subscript. Our main interest here is in the
general layout of the terms and the reader can ignore the subscripts.
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The left-hand side is the rate of change of any component of Reynolds stress
along a mean streamline: the right-hand side comprises (i) generatiorn of Reynolds
stress by interaction of the existing turbulence with the mean velocity gradients,
(ii) spatial diffusion or “turbulent transport"™ of Reynolds stresses by the
turbulence, (iii) the redistribution of Reynolds stresses between different
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components by the action of pressure fluctuations, and (iv) destruction or diffusion
by viscous-stress fluctuations. Viscous diffusion of Reynolds stress 1is small,
except in the viscous sublayer very close to a solid surface, and viscous destruction
is important only for the normal stresses, where it dissipates turbulent kinetic
energy into heat. In most turbulent flows, the terms representing generation by
interaction between the turbulence and the mean shear are approximately balanced by
the "redistribution" or "destruction" terms, and our chief problem is the modelling
of the latter. Details will be discussed below: briefly, pressure fluctuations
within the flow act to "scramble" the turbulence and make it more nearly isotropic -
that is, to reduce all the shear stresses and to equalize the normal stresses ~ while
viscous dissipation reduces the normal stresses but has little effect on the shear
stresses. (It must be remembered that the resolution of the stress tensor into shear
stresses and normal stresses depends on the axes chosen, and there is always one set
of axes, the so-called ‘"principal" axes, in which all shear stress component are
zero, leaving only the "principal" normal stresses: however principal axes are not
much used in turbulence studies.)

3.2 Boundary-layer approgximation and "Region of Influence"

The boundary-layer approximation can be applied, where it 1s physically
justifiable, to the Reynolds-stress transport equations as well as to the
momentum-transport ("mean motion") equations. Since the "diffusion" or "turbulent
transport™ terms in the Reynolds-stress transport equations are spatial gradients of
turbulence quantities, application of the boundary-layer approximation implies
neglect of the spanwise and streamwise components of this diffusion, leaving only
diffusion in the y direction. In plan view, this means that turbulent_itress, like
momentum, is merely convected along the mean streamlines at an angle tan "w/u to the
axes, and diffusion away from the streamline in plan view is negligible.

This convection of information (that is, momentum and Reynolds stress) along
mean streamlines in plan view implies a considerable simplification in the equations
of motion and their solution. The Navier-Stokes equations are elliptic, and in
principle the influence of disturbances at a given point can be propagated either by
convection by the mean velocity, or by viscous or turbulent diffusion, or by pressure
perturbations. In the 3D boundary 1layer equations, however, we have eliminated
propagation by pressure disturbances, by requiring the pressure to be equal to that
at the edge of the shear layer (determined by an inviscid flow solution, say). We
have also agreed to neglect viscous or turbulent diffusion, and the result 1is that
information 1is propagated in the crossflow plane only via pure convection. Thus the
limits of spanwise propagation of a perturbation originating at a point P (Fig. 15)
are the most-leftward and most-rightward streamlines originating at the X,Z value of
p - diffusive propagation of _ information in the Y direction being assumed
"immediate". As Wwill be seen in later lectures, the confinement of the "region of
influence™ of P to a wedge with its apex at P has important and useful implications
in numerical methods, because the finite—difference "molecule" used to compute
conditions at a given point must adequately represent the arrival of information at
that point. (Experts may note that, in particular, "integral™ methods for 3D boundary
layers yield purely hyperbolic equations in the (Y-Z)} plane.}

In stress-induced secondary flows, turbulent diffusion of momentum or Reynolds
stress in the (y-2) crossflow plane is a vital part of the process, and the equations
which include this diffusion can loosely be called "elliptic" in the (Y-Z) plane. A
perturbation at a point P can in principle reach any part of the flow downstream of
P, not just the inside of a wedge. (Again for experts, the slender-flow equations in
X, Y and Z, with only X-wigse diffusion neglected, are actually parabolic, like the
closely-analogous equation for unsteady two-dimensional heat transfer in - say - t, Y
and Z, but each step of a marching solution leads to an elliptic problem in the (Y-2)
plane.)

3.3 Turbulence modelling - details

As indicated above, the Reynolds-stress transport equations are exact
consequences of the Navier-Stokes equations, and therefore any empirical turbulence
model must, at least, be compatible with these equations. The most advanced
turbulence models involve term-by-term approximation of the equations, representing
each term as a dimensionally—correct combination of Reynolds stresses and their
gradients, and, where appropriate, mean-velocity gradients also. For example, the
pressure-strain "red&stribution“ term, which, 1like all the other terms, haﬁ/Ehe
dimensions (velocity)” / (length), could be represented as (Reynolds stress) /
(length scale). Alternatively, of course, the same term could be represented as the
product of a Reynolds stress and a mean-velocity gradient, which again has the
required dimensions: and we shall see in Sec. 3.5 that the equation governing the
generation of pressure fluctuations within the flow warns us that the best model of
the "redistribution"” terms will involve both representations.

There is an ambiguity in the modelling of the tugbulent transport terms also:
these terms, once more, have the dimensions (velocity)~/(length), but the 1length
dimension is supplied by the spatial gradient, and the most obvious model is
therefore one which represents the triple product inside the gradient as some
suitable combination of Reynolds stresses to the power 3/2. However, most
calculation methods model the turbulent transport terms by using the "gradient



diffusion"™ concept, which rests on the same insecure foundations as eddy viscosity
(Sec. 3.4) but seems adequate for correlating data. It assumes that the triple
products are proportional to the Reynolds-stress gradients, with a diffusivity whose
dimensions are thi/iame as viscosity and which is therefore taken proportional to
(Reynolds stress) x (length scale).

The combinations of existing variables must be chosen for the best physical
plausibility, but, whichever dimensionally-correct representation 1is chosen, it
merely defines a dimensionless constant, "(term in equation) / (dimensionally correct
combination of variables)". If the combination of variables exactly represented the
physical process, the constants so defined would be genuine universal constants, like
the coefficients of the Navier-sStokes equations which are p, Vv or unity.
unfortunately, such simplified equations for turbulence are inevitably less accurate
than the Navier-stokes equations, and the "constants" not only depend on the type of
flow considered but may also depend on the position in that flow. Since even the
exact Reynolds-stress transport equations are not complete descriptions of
turbulence, because information has been lost by time averaging, the model constants
would have to be found by experiment even if they were truly universal.
Unfortunately, very few 3D experiments contain sufficient information to evaluate all
the terms in the Reynolds-stress transport equations (pressure fluctuations within
the flow cannot be measured with any assurance of accuracy, so that pressure-strain
"redistribution” terms must always be determined as the net sum of the other,
measured, terms). -

3.4 Simpler modelling concepts -~ eddy viscosity

The simplest way to model the Reynolds shear stress in a 2D thin shear layer is
to assume that the eddy viscosity, defined as the ratio of the u’v’ shear stress to
the mean shear 3u/dy, can be related to mean flow parameters: for example, in the
popular Cebeci-Smith model,the eddy viscosity in the outer layer of a boundary layer
is represented by 0.0168u_& . The difficulty with this kind of correlation is that
the eddy viscosity 1is “defined as the ratio of a turbulence guantity (the Reynolds
stress) to a mean-flow quantity (the mean velocity gradient), whereas the correlation
implies that the eddy viscosity depends only on the mean-flow scales and not on the
turbulence scales. The same anomaly appears, in reverse, if the eddy viscosity is
itself obtained from transport equations, as in the popular k, epsilon model: this
wrongly implies that the eddy viscosity is a property of the turbulence alone.

The "mixing length" concept is close to that of eddy viscosity, both in
principle and in practical results. It relates the shear stress to the square of a
velocity gradient: this leads to a fully non-linear differential equation for the
mean velocity, which 1s a nuisance numerically. Therefore eddy viscosity is
currently the more popular for discussion or use, but we shall use mixing length in a
discussion of the 1inner layer of a turbulent wall flow, y/8 < 0.2 say, in Section
3.7.

In the inner layer, the turbulence is near "equilibrium", with the generation
term (i) in Eg. (12) nearly balanced by the redistribution or viscous-destruction
terms. In this case, the length and velocity scales of the mean flow are nearly
proportional to the 1length and velocity scales of the turbulent motion, and the
anomaly in the eddy viscosity concept is unimportant. Even in the outer layer, the
turbulence may not be too far from equilibrium if the flow is changing slowly.
However, skew-induced 3D flows are often quite strongly out of equilibrium, because
the mean shear in the crossflow plane is generated by an essentially inviscid
mechanism rather than by the cumulative effect of stress gradients: therefore,
local-equilibrium concepts like eddy viscosity are 1likely to be unreliable.
"Reliability" in this context means universality or simple behaviour of empirical
constants: we can always define an eddy viscosity as the ratio of a Reynolds stress
to the corresponding rate of strain so that

vij =-u’;u 3 / (aui/axj + auj/axi) (13)
- but note that for complete generality we ought to allow u' ‘. to depend on
rate-of-strain components in planes other than (x —x ), implying that eddy viscosity
is really a fourth-order tensor!

In 3D boundary layers our main interest is in u’v’ and v'w’, so a basic question
is whether the eddy viscosity deduced from experimental data is the same for both
these shear stresses. As discussed in Dr van den Berg’s lectures, several
experiments in 3D boundary layers show __that the eddy viscosity is anisotropic.
specifically, the eddy viscogity for the v'w  shear stress is significantly different
from the eddy viscosity for u’v’,__That__is, the direction of the T"shear stress
vector", whose components are (-u’'v’,-v'w’), is different from that of the "velocity
gradient vector whose components are (3du/dy,dw/dy). If an initially 2D boundary layer
is skewed in the (x-z) plane, a crossflow velocity gradient dw/dy develops
immediately, roughly as predicted by_the Squire-Winter-~Hawthorne formula described
above, but the crossflow shear stress -v’w’ responds more slowly - a& turbulence
usually does - so the shear-stress vector skews more slowly. However we shall see
below that the behaviour of eddy viscosity in 3D flow cannot be explained entirely by
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this semi-obvious lag effect.

In quantitative discussions about “"streamwise flow"™ and ‘"crossflow", we
immediately encounter the basic difficulty that the definitions of the X and 2
directions are arbitrary: about the only meaningful definition of X 1s as the
direction of an initial quasi-two-dimensional motion before the imposition of a
spanwise (z-wise) pressure gradient. The usual "invariance"™ principle, that a
physical phenomenon 1is independent of the axes used to describe it, also makes it
difficult to defend the concept of special "streamwise" and "cross-stream" (x and 2)
axes. A special case of the principle is that the description of a phenomenon ought
not to be altered by uniform translation of the axes (Galilean invariance), and it
follows that the direction of the mean-velocity vector, whether in the free stream or
elsewhere, cannot be rigorously used as a preferred direction in the flow - that 1is,
we should not make our turbulence model depend on it. Thus, even if one accepts that
eddy viscosity 1s an adequate concept in 2D flow, the choice of axes to define the
components of eddy viscosity in 3D flow is difficult. The same applies to other
modelling parameters, as we shall see below.

The Navier-Stokes equations and the Reynolds-stress transport equations, as
quoted above, are of course exact, and are therefore valid for any choice of X, 2
axes. The same applies to any thin-shear-layer form of the equations if gradients in
the X and % directions are small: clearly the y direction (in which gradients are
large) cannot be chosen arbitrarily. The "slender shear flow" equations, for flow in
wing/body Jjunctions and ducts, require X to be chosen as the direction of small
gradient, but are invariant with respect to rotation in the Y-Z plane. Therefore the
difficulties of definition encountered with eddy viscosity will not necessarily
appear in the case of other models.

This writer’s opinion is that, in 3D even more than in 2D, calculation methods
for the more demanding flows ought to be based directly on the Reynolds-stress
transport equations - simplified as far as possible, of course. As we have just seen,
the "lag effect" on shear-stress direction, which 1is the result of mean-flow
transport of Reynolds stress (i.e., the rate of change of Reynolds stress along a mean
streamline) 1is often too big to neglect in 3D flows. If transport of Reynolds
stresses by the mean flow and transport by the turbulence itself are both negligible,
each shear-stress transport equation reduces to "generation" equals "destruction":
that 1is, interaction between the existing turbulence and the mean shear is balanced
by pressure-strain redistribution, otherwise called the T"return-to-isotropy" or
scrambling™ term. This "local equilibrium" is a fair first approximation for flows
which are changing slowly in the streamwise direction (small mean-flow transport),
because turbulent transport is generally fairly small except near .the outer edge of a
shear layer. Even this simplified case brings us back to the modelling of the
pressure-strain redistribution term, term (iii) in Eg. (12), as being the most
critical part of the development of a calculation method.

3.5 The pressure-strain "redistribution" term

+  If we take the divergence of the Navier Stokes equations, i.e. differentiate the
X,-component equation with respect to x, and sum over all values of i, we obtain a
POisson equation for the pressure fluctuation. This equates the Laplacian of the
pressure fluctuation p’ to a "source" term, which depends not only on the turbulence
intensity at the point considered but also on the mean—velocity - gradients. This
curious situation, that a fluctuating quantity depends on mean-flow gradients, is
just a consequence of the way in which we take averages, but the result is that the
formal solution of the Poisson equation for p’” implies that the pressure-strain
redistribution term also consists of two parts.

Both parts of the redistribution term with the Poisson solution substituted for
p’ are, strictly, integrals over the whole of the flow field. One part is determined
entirely by the fluctuating quantities, while the other depends on the mean velocity
gradients: the latter is called the "rapid"™ part - in this context, because it
responds immediately to any change in mean velocity gradient. This fact was pointed
out by P.Y. Chou (Zhou) in 1945, by Rotta in 1951 and by Lilley and other workers on
aerodynamic noise in the early 1960s, but was slow to gain acceptance in turbulence
modelling. Even with all possible approximations, this implies that the
pressure-strain redistribution term at a given point in a 3D thin shear layer depends
not only wupon the turbulence quantities but also on the two components of the mean
velocity gradient (mean shear), du/dy and dw/dy.

I1f we regard the two shear-stress components -u’'v. and -v'w’ as the components
of a two dimensional vector, the pressure-strain terms in the corresponding
Reynolds-stress transport equations are also the components of a two-dimensional
vector, and in general the direction of the pressure-strain "vector" will not be the
same as that of the shear stress - that is, the pressure-strain "redistribution" term
does not merely reduce the magnitude of the shear stress vector but may also alter

its direction. The simplest two-term model has one term whose vector direction is
that of the mean-shear velocity gradient (du/dy,_3w/dy) and another whose direction
is that of the shear stress vector (-u'v’, -v'w'). However this model will never

1ead.to the creation of a difference between the direction of the mean-velocity
gradient vector and that of the shear stress vector if the two initially coincide,
and experimental results imply that the difference between the directions cannot be
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completely explained as the "lag effect"™ due to the mean-flow transport terms,
described above. To meet this objection, Rotta (Ref. 22) has suggested a more general
model of the pressure-strain term, including a "anisotropy" factor. Rotta’s model as
originally proposed uses the mean-velocity direction as an axis, contrary to the
invariance concept presented above; and in practice -.e.g. Abid, Ref. 23 - the Rotta
model seems to yield only a small difference betweéen the directions of velocity
gradient and shear stress in the initial stages of the calculation, followed by an
excessively rapid divergence between the two directions as the crossflow increases.

In slender shear layers, the predominant mean-velocity gradients are 3U/3Y and 3U/d%,
and both will appear in the modelled pressure-strain terms. However the problem is
obscured by the apparent need for modelling parameters in slender wall flows to
depend on the distance from each surface ("wall effect"): empirical adjusthents for
wall effect may hide deficiencies in the basic pressure-strain model.

3.6 Length scales

The part of the pressure-strain term that depends solely on turbulence quang}Eies
must be expressed as the cube of a velocity scale - say (turbulent energy)
divided by a length scale. In 2D transport models, the length scale is almost always
derived from a model of the dissipation transport equation (the "epsilon_ equation™),
and at present the same equation is normally used in 3D without extra terms or
chenges in the coefficients. The approximation to the dissipation that is normally
modelled is a scalar (isotropic) gquantity distributed equally among the three
Reynolds normal stresses, However the epsilon equation is used to give a length
scale of the large, energy-containing eddies, and is, at best, a plausible modelled
equation for the rate of transfer of energy from the large eddies to the small ones.
This rate 1is nominally equal to the dissipation rate but is not isotropically
distributed. We may therefore expect trouble in 3p. Even if one ignores the vector
character of "epsilon", the coefficients in the epsilon equation are likely to depend
on the three—dimensionality of the flow. The main use of the length scale is in
modelling the pressure-strain term, where general uncertainties at present mask 3D
effects on the epsilon equation.

3.7 The inner layer

In the inner 1layer of a turbulent boundary 1layer, the resultant of the
mean-shear velocity gradient "vector" (du/dy, dw/dy) is large compared to any other
velocity gradient such as 3w/3x, and the turbulent eddies are small enough for their
lifetimes to be short compared to a typical mean-flow development time. We therefore
expect to recover local-equilibrium results, like the two-dimensional "mixing length"
formula which equates the resultant shear stress to the square of  the resultant
velocity gradient multiplied by the square of the mixing length, the latter being
directly proportional to the distance from the surface, i.e.

/[(-u'v’)z + <-v'w')2]= 12((su/ay) 2 + (aw/ay)?) (14)

where 1 = Ky = 0.41ly. However, this "local equilibrium™ result that the shear stress
and the mean velocity gradient are in the same direction does not necessarily apply
to the viscous sublayer, for which a simple but illuminating analysis is given by van
den Berg (Ref. 24). Pierce et al. (Ref. 25) provide a general review of models for
the 3D inner layer, but those which have a simple phys1cal interpretation are either
special cases or equivalents of van den Berg’'s. Fortunately the main effect of
non-equilibrium in the sublayer is that the velocity difference between the solid
surface and the edge of the sublayer acquires an extra component transverse to the
direction of the surface shear stress. Van den Berg’'s semi-empirical estimate of
this extra slip velocity could be, but has not been, improved by experiment.

Many 3D turbulent flows in real life - or in laboratory experiment - can be
predicted quite well by the Squire-Winter-Hawthorne inviscid secondary flow formula,
providing that the Reynolds stresses in the internal layer near the surface (Fig. 6)
are modelled adequately. That is, the inner--layer model is if anything more crucial
than the outer-layer model, at least for skew-induced secondary flows.

3.8 Use of data

We now consider how experimental data can help the modelling process. As in 2D
flows, we immediately hit the difficulty that the all-important pressure-strain term
cannnot be measured directly. Although evaluating the pressure-strain term as the
difference of other measured terms may give adequately accurate values for the term
as a whole, it cannot show the relative sizes of the two parts, the "rapid" part,
depending on the mean strain rate, and the purely- turbulent part. In fact, even full
time-dependent turbulent simulations, yielding u’ . v', w and p” as functions of
time, will not usually do this directly, but the two parts can be recovered
separately by evaluating one afterwards from the calculated fluctuations.
Time-dependent simulations of 3D flows, whether full turbulent simulations (FTS) or
large-eddy simulations (LES) with a model for the fine structure, are only Jjust
starting to be feasible for 3D flows such as those on "infinite" swept® wings, but
will be a useful supplement, and perhaps eventually a replacement, for experimental
data.
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The situation in practice is that turbulence models for 2p flows are being
adjusted empirically for 3p flows., Abid and others have used Rotta’s model of the
pressure-strain term to define and optimise a constant T, related to the eddy
viscosity ratio but implying a directional preference of the pressure-strain term.
Rotta’s model does not represent the even more spectacular effect of crossflow in
decreasing the shear-stress magnitude, which implies an increase in magnitude of the
pressure-strain term (leading to a faster return to isotropy). However no
significant improvement of Rotta’s model seems to have been offered.

There are now several experiments which contain_reliable measurements of all the
Reynolds stresses (including the hard-to-measure v'w' ) but there are few data on the
triple products, even in 3D boundary layers. In strongly-skewed boundary layers they
appear to decrease in magnitude as the crossflow increases, just as the resultant
shear stress and turbulence intensity do. Thiszwould be qualitgtively represented by
an extension of any existing 2D model for u’v’® to give v “w’ also. TUnless it
contained an extra constant analogous to Rotta’s T, such a model would imply that
these two triple products behaved similarly although the quantities they transport,
u'v and v w , do not. However, elucidation of any odd vector behaviour of triple
products is a much lower priority than improved modelling of the pressure-strain
term.

4.0 CONCLUSIONS -

Even after 20 years of computer modelling of turbulence, the position is that
even models based as faithfully - and expensively -~ as possible on the Reynolds
stress transport equations cannot satisfactorily predict the Reynolds stresses in
flow over swept wings. As pointed out above, a good model for the inner layer
suffices to give adequate predictions of surface shear stress in boundary layers on
wings not too close to the stall, but outer-layer models are still questionable. The
user of calculation methods must therefore keep close watch on the predicted results,
and, in particular, should check the method in a flow as similar as possible to the
one for which predictions are required.
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“boundary region”
or

“slender shear flow' sheet”

Fig. 1 Types of 3D flow

Jk

Fig. 2 Generation of streamwise vorticity by distortion of
cross-stream vortex lines (secondary flow of the first kind).

.
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Fig. 3 Generation of stredmwise vorticity by Fig. 4 Ship "bilge vortices™ - initially
Reynolds stresses (secondary flow of the skew—-induced secondary flow followed by
second kind). sharp-corner effects.
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Fig. 5 Development of crossflow by stronger deflection of slow-moving
boundary layer fluid in cross-stream pressure gradient.

_
u w
I.8.L.
INNNNNN ~NN ~ NN N~ SNNN N NNNNRNT ™~ NN NN

(b). streamline axes x, y=Y, Z showing

bitr :
DEURCLL A4 13 ACEILRR TR T internal layer of reversed dw/dy.

Fig. 6 Crossflow velocity profile

g
Fig. 7 Vortices on lee side of cone at incidence. Secondary flow in
Section A-A approximates to impulsively-started 2D flow over circular
cylinder. Note convergence of surface streamlines at separation line
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(a) isolated vortex (b) vortex pair with "common" flow downwards (c) "common flow" upwards

Fig. 8 Cross section (yz plane) of vortices imbedded in boundary 1layers
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Fig. 9 W-component velocity profiles in a Fig.1l0 Transition on swept wing, showing
given laminar boundary layer for different successive laminar flcw, vortex streaks and
directions of X,z axes. turbulent flow.

(b) enlgrgement; equal and opposite
deflections of vorticity vector and velocity
vector, -

(a) anticlockwise deflection of fluid
elements due to clockwise deflection of
velocity vector

Fig.1ll 1Illustration of Squire Winter
Hawthorne secondary flow formula.
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Fig:12 Gruschwitz/Johnston "polar plot® of w
against u in streamline coordinates (w_= p),

dw/du = (3w/dy)/(du/dy) = -2 mwhere o IS
turning angle

(b)

T
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(c)

Fig.13 Response of 2D boundary layer to
adverse pressure gradient

total pressure and shear stress remain
constant on a given streamline (W = constant)
except in internal layer near surface,
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(b) crossflow velocity gradient
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{c) crossflow shear stress (d) Stress/energy ratio

Fig.14 Response of 3D boundary layer to adverse pressure gradient(leading to crossflow)

(b) plan view

(a) velocity-vector profile

Fig.15 Region of influence of a point P in a 3D boundary layer
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Fig.16 Stress-induced secondary flow in duct
with partly-rough wall - secondary flow tends
to be down gradient of turbulent intensity.

(a) side view (b) end view

(¢) plan view

Fig.17 3D wall jet from circular nozzle

N

g
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Fig.18 Axisymmetric body with rotating -
rear part (showing internal layer)
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THREE-DIMENSTONAL SHEAR LAYER EXPERIMENTS AND THEIR USE AS TEST CASES FOR CALCULATION METHODS

SUMMARY

by
B. van den Berg
National Aerospace Laboratory NLR
Anthony Fokkerweg 2, 1059 CM Amsterdam
The Netherlands

Three-dimensional shear layer experiments are discussed with a view to those developing calculation
methods. The emphasis 1s on the selection of useful experiments for comparisons with calculations and the
proper way to perform the comparisons. A review of more recent three~dimensional shear layer experiments

is included.

LIST OF SYMBOLS

4
P

M

U,V,W
u',v',w'

X,¥s2

subscripts

e

w

pressure coefficient, Cp = (p-p,)/q, -
Mach number

static pressure

dynamic pressure

Reynolds number based on momentum thickness

mean velocity components

fluctuating velocity components

coordinates

external flow angle, relative to x-axis

flow angle in shear layer, relative to external flow direction
displacement thickness

shear stress

at shear layer edge
at wall

in free-stream

8 INTRODUCTION
®

The intended reading public of this paper on experiments
in three-dimensional shear layers are those active in devel-
oping calculation methods for this type of flow rather than
experimentalists. Therefore experimental techniques will be
discussed here only very globally, mainly mentioning some of
CONTENTS the most ilmportant problems assoclated with measurements in
turbulent flows and the measurement accuracy. More attention

EXPERIMENTAL TECHNIDUES
REQUIREMENTS FOR USEFUL DATA
REVIEW OF EXPERIMENTS

USE OF EXPERIMENTAL DATA

PRESENT STATUS AND PROSPECTS

will be paid to the way to select experiments, which are best
suited for checking calculation methods. The choice may de-
pend on the intended application area of the calculation
method considered. Then a review will be given of the avail-
able three~dimensional thin shear layer experiments, with the
emphasis on the more recent experiments and the experiments
used earlier for extensive theory experiment comparisons in
Workshops. Subsequently the use of experimental data for com-
parisons with calculations will be discussed comprehensively.
To draw valid conclusions from a comparison, a more extensive
study must be made of the consequences of egperimental errors
for the calculation results and the role-of the assumptions
made in the calculation methods. Finally the present status
in three-dimensional shear layer research will be summarized
and the need for further research will be mentioned.
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EXPERIMENTAL TECHNIQUES

PRINCIPAL VELOCITY MEASUREMENT TECHNIQUES

PRESSURES —= U, V,W

NB.:

TYPICAL 8.L. THICKNESS IN

EXPERIMENTS = ORDER OF CM’s

TYPICAL DIMENSION OF MEASUREMENT

VOLUME = ORDER OF MM's.

SPATIAL RESOLUTION IS GENERALLY A PROBLEM,
ESPECIALLY FOR TURBULENCE QUANTITIES

TR enessunerRoses

Z HOT-WIRE PROBES

HEAT FLUX —= U, VW, u% v, w*

LASER-DOPFLER
ANEMOMETRY

PARTICLES —» UV, W, v/, ¥, w"

&

THE QIFFICULTY OF ACCURATE
TURBULENCE MEASUREMENTS

MAIN PROBLEM: MEASUREMENT OF MOMENTARY
VELOCITY VECTQR OIRECTION

SAY: ERROR= $02°

v.w=gos |uf | ERRORINY = 7%

ERRORBINW v = £ %
HIGHLY TURBULENT FLOWS:

U v,w™> 02 [Uf —= LARGE MOMENTARY FLOW ANGLES
u,v,w'> 04 [Ul —» OCCASIONAL REVERSE FLOW

&

SKIN FRICTION MEASUREMENT TECHNIQUES

=
SURFACE PRESSURE PROBES,

TR, ASED O GRRALLLAW

MAIN PROBLEM; VALIDITY OF WALL LAW

e

SURFACE HOT—FILM PROBE,

TP, DSl ON ANALOGY oF
7

FRICTION AND HEAT TRANSFER
MAINPROBLEM: HEAT TRANSFER TO SUBSTRATE

=

DIRECT FORCE MEASUREMENT

% %/A ON FLOATING ELEMENT

MAIN PROBLEM: EFFECT OF PRESSURE FORCES
ON FLOATING ELEMENT

o)

EXPERIMENTAL TECHNIQUES

Before discussing velocity measurement techniques, it is
useful to explain the nomenclature: Mean velocity components
are U, V, W with fluctuating parts u', v', w', while V << U,
W in the thin shear layer along the x-z plane,

The three principle techniques to measure flow velocities
are: 1) Preasure probes., Measured pressure differences are
used to deduce the local flow velocity., Merely mean veloci-
ties are obtained and that only approximately in strongly
fluctuating flows. The technique is, however, fast and easy.
ii) Hot wire probes, The velocity is related to the heat
transfer from the thin hot wires. Mean and fluctuating velo-
cities are obtained, Accuracy is limited by calibration
drift. Hot wires are the most usual technique for measuring
fluctuating turbulence quantities. 1ii) Laser Doppler Ane-
mometry. The velocity of small particles, which are seeded
in the fluid, is measured using laser light beams, This is
a rather new technique with great potentials, A special ad-
vantage is the abaence of aerodynamic probe interference.

All these experimental techniques have in common a fairly
large measuring volume, generally with dimensions of the
order of 1 mm. This is important as most laboratory boundary
layers are fairly thin, of the order of cm's, so that spatial
resolution is often a problem, especially for turbulence
measurements because of the small eddies in the flow.

The usefulness of an experiment as a basis for improving
calculation methods generally increases with the amount of
detail experimental information available, Particularly the
presence of turbulence data is desirable, Unfortunately accu-
rate turbulence measurements are not easy to perform. To
clarify the problem the measurement accuracy of the moment-
ary local flow velocity in a turbulent flow will be consider-
ed. Tentatively the measurement error in the flow angle will
be assumed to be * 0.2°, which actually is a fairly high
standard of accuracy., For a turbulent velocity fluctuation
level of 5 % of the mean velocity, the corresponding relative
error in v' and w' (the fluctuating velocity components nor-
mal ‘to the mean velocity vector) then becomes * 7 7, It will
be clear that in the circumstances accurate measurements are
difficult to perform.

In adverse pressure gradient flows close to separation
much higher turbulence levels occur. Consequently smaller re-
lative errors in the fluctuating velocities are likely for
the same absolute error in the flow angle. However, for velo-
city fluctuation levels higher than 20 7, the momentary flow
angle may exceed at times the acceptable range of a probe
with e.g. crossed hot wires. When the fluctuation level ex-
ceeds 40 % occasional reverse flow may occur, requiring
velocity measurement techniques, which distinguish reverse
flow, such as Laser Doppler Anemometry.

Since in turbulent boundary layers large velocity varia-
tions occur in a thin layer near the wall, it is useful to
know the magnitude and direction of the skin friction, i.e.
the limiting conditions at the surface. Again there are three
principle measuring techniques: 1) Surface pressure probes.
The skin friction measurement is based here on the assumption
that in the near-wall region a universal velocity distribu-
tion exists, dependent only on the local skin friction and
the fluid properties. This so-called law of the wall, howe-
ver, has a restricted range of validity and assumes no velo-
city vector rotation in the near-wall region, so that the
skin friction direction found, e.g. by rotating the pressure
probe, is no more than at best a mean flow direction over the
probe height. 1i) Surface hot film probes, using hot films
glued on the surface. Analogy of skin friction and heat
transfer is assumed and the skin friction direction may be
obtained by using two surface hot films at right angles. A
problem to be considered is the heat transfer to the sub-
strate and its effect on the calibration. iii) Force measure-
ments on a floating surface element., This is the only direct
and in principle indisputable measurement technique. In prac-
tice, however, accurate force measurements may be difficult
to perform as the skin friction force to be measured is small
and unwanted pressure forces on the floating element easily
impair the measurements.



@ EXPERIMENTAL ERROR ESTIMATES @

INUMBERS GIVEN ARE NO MORE THAN GLOBAL INDICATIONS)

TYPICAL ERRDR

SURFACEPRESSURE 4 0.2% of q,,
MEAN VELOCITY +05% ofU,
FLOW ANGLE £05°

SKIN FRICTION + 5%of Ty
REYNDLDS STRESS £10% of ¥V, ETC.

ERROR VEASUS MISTAKE:

N CHECKS E.PREF LY USING
ESSENTIALLY DIFFERENT MEASURING TECHNIOQUES

®)
REOUIREMENTS FOR USEFUL DATA

i) EXPERIMENTAL OATA RELIABLE?
i} FLOWWELL DEFINED FOR CALCULATIONS?
iii} FLOW INTERESTING AS TEST CASE?

i) EXPERIMENTAL DATA RELIABLE?

® COMPARATIVE MEASUREMENTS MADE?
IE.G. DATA WITH DIFFERENT MEASUREMENT TECHNIQUES}

® OATA INTERNALLY CONSISTENT?
(E.G. CORRESPONDENCE OF SKIN FRICTION
AND REYNOLDS SHEAR STRESS NEAR WALL)

& GLDBAL LAWS SATISFIEQ?
{E.G. MASS AND MOMENTUM INTEGRAL BALANCE|

g
@ i} FLOWWELL DEFINED FOR CALCULATIONS? @

® FLOW SIMILARITY PARAMETERS
IE.G. REYNOLDS NUMBER) PROVIDED?

@ INITIAL CONDITIONS PROVIQED IN SUFFICIENT DETAIL?

@ SURFACE PRESSURES OR OTHEA BOUNDARY CONOITIONS
PROVIDED SUFFICIENTLY CLOSELY SPACED?

COMPUTABLE REGION

BORDERS DF REGIDN
DF DETERMINACY
OF INITIAL DATA

INITIAL CONDSTIONS
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. No generally valid error estimates for the various measur-
ing quantities can be given, of course. Yet it seems useful
to state here the global error level, which should be normal-
ly achieved in the author's opinion. As indicated in the
adjacent table, surface pressure measurement errors may be
expected to be small, which 1s fortunate as the pressure gra-
dient is the quantity of interest. Reasonably accuracy is
generally achieved for the mean velocity magnitude and di-
rection. The attainable measurement accuracy for the skin
friction is much more a problem. This is worse still for the
turbulence measurements, as discussed earlier, leading to a
large typical measurement error estimate for the Reynolds
stress components,

Besides normal measurement errors the possibility can
never be excluded that the data are just wrong, due to mal-
functioning of the measurement instrument or mistakes in the
data processing software. A parallel with numerical calcula-
tion methods can be drawn., Though the numerical truncation
error (cf. measurement error) should be considered, the main
problem is generally to get the computer program free of
faults (cf. measurement mistakes). In view of the above, in-
dependent check measurements should be regarded as an essen-
tial part of an experiment to prove its reliability.

REQUIREMENTS FOR USEFUL DATA

After the short discussion on experimental techniques,
attention will be focussed now on the selection of experi-
ments, which can be used profitably for comparisons with
calculations., To decide whether an experiment is suitable as
a test case for calculation methods, three questions have to
be adressed. These concern the reliability, the completeness
and the interest of the experimental data, First the data
reliability will be considered.

As noted earlier, an important means to check the relia-
bility of the data is by making comparative measurements,
preferably using. different experimental techniques. The
ultimate check is to perform duplicate measurements in two
different test set-ups, which are geometrically and otherwise
similar. Besides direct check measurements of the same flow
quantities, the internal consistency of the data set may
provide an indication of data reliability. A simple example
is the measured Reynolds stresses, u'v' and w'v', in the near
wall region (but outside the viscous sublayer), which should
extrapolate to the independently measured skin friction com-
ponents. A third check 1s to investigate the accuracy with
which global flow laws are satisfied by the data, The best
known example is the momentum integral balance. Application
of the momentum integral balance means checking the corres-
pondence between the skin friction and mean flow data.

The second question to be addressed 1s whether the experi-
ment provides sufficient data to make calculations possible.
In the first place the flow similarity parameters, such as
the Reynolds number, must be provided (and be constant for a
data set). Assuming boundary layer calculations with a mar-
ching procedure, boundary layer data should be provided along
an initial line. The initial conditions should preferably
include measured turbulence quantities, as these may affect
the downstream boundary layer development over a substantial
distance. Downstream of the initial line with given data, a
region of influence and a region of determinacy can be dis-
tinguished. The latter region is the computable region for
the given initial conditions. This region is indicated in the
sketch, In simple three-dimensional boundary layer flows the
borders of the computable region coincide with an external
streamline and a wall streamline. In this regilon the surface
pressure distribution must be provided sufficiently accurate
and sufficiently closely spaced. The pressure data must be
differentiable, also at the boundaries of the computational
region. If other boundary conditions are required, the other
conditions should be provided sufficiently-accurate and clo-

sely spaced by the measurements. i
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iii) FLOW INTERESTING AS TEST CASE?

OBJECTIVE OF THEORY EXPERIMENT COMPARISON:
TO CHECK EMPIRICAL ASSUMFTIONS
{E.G. TURBULENCE MODEL}

FIRST REOUIREMENT:

® SUFFICIENT COMPARISON OATA
(PREFERABLY TURBULENCE DATA}
AVAILABLE IN COMPUTABLE REGION

EMPIRICAL ASSUMFTIONS ARE SELOOM UNIVERSALLY TRUE ——

SECOND REQUIREMENT:

@ FLOW PARAMETERS IN THE EXPERIMENT IN THE RANGE
OF THOSE OF THE PRACTICAL FLOWS TO BE
CALCULATED WIYH THE METHOD AT HAND

@

SOME IMPORTANT FLOW PARAMETERS

— INITIAL TURBULENCE PROPERTIES
{MAY BE AFFECTED BY TRANSITION
TRIPPING DEVICE IN EXPERIMENT}

—~REYNOLDS NUMBER, By
{USUALLY LOW IN EXPERIMENTS;
ACCEPTABLE FOR Ry > 50007)

— MACH NUMBER, M
{USUALLY LOW IN EXPERIMENTS;
ACCEPTABLE FORM % 17}

—PRESSURE GRADIENT,
PARAMETER E.G. A= 18, /qg] (3p/ 2x)
{USUALLY LARGE IN EXPERIMENTS
——~ PRESSURE FORCES DOMINATE}

-~ FLOW DEVELOPMENT BATE,
PARAMETER E.G. &, (3A/3x)
{USUALLY LARGE IN EXPERIMENTS
— TURBULENCE HISTORY DOMINATES)

®)

&

REVIEW OF EXPERIMENTS

EARLIER REVIEWS:
JOHNSTON 1976: EXTENSIVE REVIEW
HUMPHREYS ETAL 1980: STANFORD CONF.
PATEL 1982: SHIP-LIKE GEOMETRIES

WORKSHOPS:
TRONOHEIM 1975 : 6 TEST CASES
STOCKHOLM 1978 : 1 TEST CASE
AMSTEROAM 1978 : 1 TEST CASE
GOTEBORG 1980: 2 TEST CASES
BERLIN 1982: 5 TEST CASES

PRESENT REVIEW:

MORE RECENT EXPERIMENTS
EXPERIMENTS USED IN WORKSHOPS

3D THIN SHEAR LAYERS
(NO SHIPSTERN FLOWS}

The final question, but not the least important one, is
whether the experimental flow is interesting as a test case
for calculations., The objective of the theory experiment
comparison must then be clearly posed first, The most common
objective is to check the empirical assumptions in the calcu-
lation wethod, e.g. contained in the turbulence model ap-
plied. To perform comparisons, in the first place sufficient
comparison data must be available in the computable region.
As detail comparisons are usually more instructive, the
availabllity of measured turbulence data is an advantage,
especially 1f the calculation method uses a turbulence model.

A fact, which 1s generally underexposed, is the limited
validity range of most empirical assumptions. This holds also
for the empirical assumptions made in current calculation
methods for turbulent shear layers, even 1f sophisticated
turbulence models are used. Because of their limited validi-
ty, checking the accuracy of empirical assumptions is only
sensible in the type of shear flows for which the calculation
method is intended. Various flow parameters may be expected
to affect the turbulence properties and so the empiricism.
All these parameters should be considered when selecting ex-
periments for checking empirical assumptions. Some of the
important flow parameters will be reviewed hereafter,

- To be useful as a test case, the initial turbulence pro-
perties of the shear layer 1n the experiment should be
similar to those in practical flows. In experiments turbu-
lence properties may be affected e.g. by crude transition
tripping.

- The test Reynolds number should be in the range of the
practical application area of the calculation method. Usually
the Reynolds number is low in experiments, but this is pro-
bably acceptable if R, > 5000.

~ The test Mach number should be in the correct range.
Usually the Mach number is low in experiments, as turbulence
measurements are difficult to perform in high-speed flows,
Fortunately compressibility effects on turbulence are proba-
bly fairly small, unless M >> 1. .

~ The pressure gradients in the experiment should be of the
order of magnitude encountered in practical flows. However,
because of the spatial resolution problem, thick boundary
layers are preferred for the measurements, while test section
dimensions are limited. Consequently the pressure gradient
parameter X = (8,/q )(dp/3x) 1s often large in experiments,
so that pressure forces dominate. -

- The flow development rate should be comparable with that

in practical flows. Because of the 1limited test section
length and the thick boundary layer, the flow development
rate, 61(3)./31(), is usually large in experiments, so that

turbulence history effects dominate. -

REVIEW OF EXPERIMENTS

An extensive and thorough review was given ten years ago
by Johnston (1976). For the 1980-81 Stanford conference, ex-
periments were evaluated on their possible use as test cases
by Humphreys and Van den Berg (1980). Viscous shear layers a-
round ship-like bodies were reviewed recently by Patel (1982),

Some experiments have been employed already extensively
for theory experiment comparisons in Workshops. Several such
Workshops have taken place in the last ten years, starting in
1976 with the so-called "Trondheim Trials" (East 1976). The
Workshops in Stockholm (1978) and in Amsterdam (1979) consi-
dered simple swept wing flows (Humphreys 1979; Lindhout,
Van den Berg, Elsenaar 1980), while ship boundary layers were
the subject of the 1980 GBteborg Workshop (Larsson 1981). In
1982 a Workshop with several test cases took place in Berlin
(Van den Berg, Humphreys, Krause, Lindhout 1986).

The experiments used as test cases for Workshops are im-
portant as the usefulness of the data =should be expected to
have been established and also because other calculation re-
sults are available. The present review will include these
experiments, so far they provide detail boundary layer data,
but further will be restricted to the more recent thin shear
layer experiments. Note that inclusion of an experiment in
this review does not necessarily mean that it satisfies the
requirements discussed in the preceding section.
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EXPERIMENTS: 3D B.L FLDWS INDUCED 8Y @
TRANSVERSE SURFACE VELDCITY

LOHMANN, 1976 -
{INCL. TURB, DATA, M<<1} | R
BERLIN WS TEST CASE =

WA

FULACNIER, ARZOUMANIAN, OUMAS, 1982
{INCL. TURB. DATA, M <<1)

HIGUCNL, 1980
{NO TURB. DATA, M<<1}

NEBBAR, ORIVER, 1985
{AS ABOVE, BUT 3p/23x 0

&

EXPERIMENTS: 3D B.L. FLOWSIN DUCTS @W
— - - &

i) CURVED DUCT

DE GRANDE, HIRSGH, 1078
{INCL. TURB. DATA, M<<1)

i} DUCT WITH CENTER BDDY

FERNHOLZ, VAGT, 1981
{INCL. TURB. DATA, M<<1)

KUSSOY, VIEGAS, W
HORSTMAN, 1830 -
(INCL. TURB. DATA, M > 1) Q:
sHotk—7 7
bz

CHOU, CHILDS, 1985
{NO TURB. DATA, M > 1)

* two-dimensional boundary layer

Cd

&

~
EXPERIMENTS: 3D 8.L, FLDWS DN FLAT PLATES @

) PRESSURE INDUCED 8Y BDDY NDAMAL TD PLATE

DECHOW, FELSCH, 1977
{INCL. TURB. DATA, M<<1)
BERLIN WS TEST CASE

KROGSTAD, 1979
{NO TURB. DATA, M <<1)

FIERCE, HARSH, MENNA, 1985
{INCL. TURB. DATA, M<<1|

OSKAM, VAS, BOGDONOFF, 1978
{NO TURB. OATA, M > 1}

PEAXE, 1976
(NOTURB. DATA, M > 1}

DOLLING, McCLURE, 1985
(NO TURB. DATA. M > 1}
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A fundamental type of experiment is the three-dimensional
flow obtained when a zero-pressure-gradient boundary layer
encounters a local transverse motion of the bounding surface.
The interesting feature of the flow is that the three-dimen-
sionality is related here solely with the transverse shear
forces. In practical test set-ups such a boundary layer flow
may be generated on a cylinder with a stationary and rotating
section, When the front section is stationary, the initially
becomes three-dimensional
after the transition to the rotating part. This flow was
measured amongst others by Lohmann (1976) and more recently
by Fulachier, Arzoumanian and Dumas (1982). The data of
Lohmann were used as a test case for the Berlin Workshop.
When the front section is rotating, the three-dimensional
boundary layer generated relaxes to a two-dimensional flow on
the downstream stationary section., This flow was measured by
Higuchi (1980) and later by Hebbar and Driver (1985), using
the same test set-up, but with a streamwise pressure gradient
imposed. The boundary layer thickness in these experiments
was 1n all cases not small relative to the cylinder radius,
so that transverse curvature and rotation will have affected
the turbulence properties. >

The flow along a duct wall provides a conveniently measu-
red boundary layer, which will be three-dimensional when the
duct is curved. A simple case is the boundary layer along one
of the two flat walls of a duct with the other walls curved,
as applied for instance by De Grande and Hirsch (1978). The
turbulence properties in the duct corners deviate from those
in normal thin ahear layers. Because of possible turbulence
history effects, the region of influence of the cornmer flows
should preferably not be part of the measurement region.
This may restrict the usable boundary layer development
length in the duct.

Alac straight ducts with a center body have been applied.
The dinvestigation of Fermholz and Vagt (1981) concerns the
three-~dimensional boundary layer along a circular cylinder in
a duct with a skew-mounted back plate. Kussoy, Viegas and
Horstman (1980) and Chou and Childs (1985) have investigated
the boundary layer along a circular duct with an asymmetric
center body. In these two experiments the flow was supersonic
and the center body induced a three-dimensional shock wave
boundary layer interaction on the duct wall. The experiment
of Kussoy et al was selected as a test case for the 1980-81
Stanford Conference. In these flows the ratio of the boundary
layer thickness to the wall radius was not small and conse-
quently curvature effects are not megligible.

A frequently used test configuration consists of a flat
plate with a two-dimensional body mounted normal to it, which
induces a three-dimensional boundary layer on the plate.
Close to the body a three-dimensional separation regiom oc-
curs. The measurement data obtained in such a test set-up by
Dechow and Felsch (1977) were  used in the Berlin Workshop.
Further the measurements by Krogstad (1979) and Pierce, Harsh
and Menna (1985) will be mentioned here., The latter data set
is unique in that it includes skin friction results in a
three-dimensional boundary layer from force measurements on a
floating element (McAllister, Pierce, Tennant 1982).

In supersonic flows a sharp-edged plate at angle of attack
normal to the flat test surface may be employed to induce a
three-dimensional shock ‘wave boundary layer interaction on
the flat plate. Several variances of this set-up have been
tested. Here mention will be made of the measurements by
Oskam, Vas, Bogdonoff (1976), by Peake (1976), both 1980-81
Stanford Conference test cases, and those by Dolling and
McClure (1985).

A common problem with test set-ups of this type is the re-
lative short distance in which boundary layer three-dimen-
sionality develops. Comsequently turbulence=history effects
tend to dominate. Actually a data analysis shows that the
turbulent shear stresses 1in some cases may be regarded as
very nearly frozen (Van den Berg 1982).
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it} OTHER PRESSURE—INDUCING BODIES

~
EXPERIMENTS: 3D B.L FLOWS ON FLATPLATES @

BRADSHAW, TEARELL, 1989
{INCL. TURE. QATA, M<<1)
TAONOHEIM WS TEST CASE

VAN DEN BEAG, ELSENAAR, 1972
{INCL. TURB, DATA, M<<1)
TRAONDHEIM + BEALIN WS TEST CASE

BRADSHAW, PONTIKOS, 1985
{NCL. TURB. DATA, M<<1}

MULLER, KRAUSE, 1979
UINCL. TURB, DATA, M<< 1)
BERLIN WS TEST CASE

DEMETRIADES, McCULLOUGH, 1965
INOTURB. DATA M >1}

&

®
EXPERIMENTS: 3D B.L. FLOWS ON SWEPT
AIRFOILS BETWEEN WALLS

COOK, McDONALO, FIRMIN, 1979
INOTUAB. OATA, M~ 1,B.L. + WAKE FLOW)

COUSTEIX, PAILKAS, 1983
{INCL. TURB. OATA M<<), B.L. + WAKE FLOW)

POLL 1879
(INCL, TURB. DATA, M<<1)
TRANSITIONAL FLOW

MICHEL, ARNAL, COUSTODLS, JUILLEN, 1984
(INCL. TURB. DATA, M <<i|
TRANSITIONAL FLOW

oy

EXPERIMENTS: 3D 8.1, FLOWS ON SWEPT WINGS

EAST, 1973
{NO TURB OATA M<<1)
TRONDHEIM WS TEST CASE

SEETHARAM, PFE(FER,
DHMURA, MsLEAN, 1982
(NO TURS. OATA, M <<1)

SPAID, ROOS, 1963
INO TURB. QATA, M & 1)

BERTELRUD, 1984
{INCL. TURB. OATA, M~ 1}

A three-dimensional boundary layer flow on a flat plate
can be induced by any combination of nearby bodies. The early
experiment of Bradshaw and Terrell (1969), used as a Trond-
heim Workshop test case, concerns the quasi-two-dimensional
turbulent boundary layer on a flat plate behind a swept body
fixed on the plate. The experiment of Van den Berg and
Elsenaar (1972), used in the Trondheim and Berlin Workshops,
also concerns a quasi-two-dimensionmal flow as it occurs on
infinite swept wings. The pressure distribution on the sur-
face is induced by a swept, wing-like body suspended above
the test plate. The initially two-dimensional boundary layer
on the test plate gradually develops into a three-dimension-
al separation. In the test set-up of Bradshaw and Pontikos
(1985) the same boundary layer flow has been reproduced with
good approximation except that the flow does not quite sepa-
rate. The results confirm on the whole the earlier data and
add significantly to the detail information about this flow.
The experiment by Miiller and Krause (1979) provides data in
a fully three-dimensional boundary layer on a flat plate
with deflecting walls and a suspended body. This experiment
was used as test case for the Berlin Workshop. Finally the
supersonic three-dimensional turbulent boundary layer ex-
periment by Demetriades and McCullough (1985) should be
mentioned. .

A number of measurements have been carried out in the
shear layers of a swept cylindrical airfoill spanning a tunnel
test section, Note that a quasi-two-dimensional infinite
swept wing flow is generally not well simulated with such a
test set-up due to the flow constraint caused by the end
walls., Cook, McDonald and Firmin (1979) obtained boundary
layer and near-wake data for an airfoil between tunnel walls
at two sweep angles and at high subsonic speeds. Low speed
data in the shear layers at and behind the trailing edge of
a swept airfoil between walls have been reported by Cousteix
and Pailhas (1980, 1983).

Two experiments on transitional boundary layer flow will
be mentioned here. The three-dimensionality of the flow in-
troduces two additional mechanisms for transition from lami-
nar to turbulent flow. The first onme is transition by "at-
tachment line contamination". A transitional boundary layer
of this type has been investigated for instance extensively
by Poll (1979). The second transition mechanism typical for
three-dimensional boundary layers is transition by 'cross
flow instability". Such a transitional flow on a swept air-
foil between walls was measured amongst others by Michel,
Arnal, Coustol and Juillen (1984).

Three-dimensional turbulent boundary layer measurements on
swept wings of finite span should be expected to provide
particular useful information. Measurements on a half-model
of a slender delta wing with a leading edge vortex above the
surface were performed by East (1973), The flow studied ap-
proximates closely to conic conditions. The data have been
employed for the Trondheim Workshop. Boundary layer measure-
ments on a model of the horizontal and vertical swept tail-
planes of a typical transport aircraft were carried out by
Seetharam, Pfeiffer, Ohmuro and McLean (1982.) The tests were
performed in a large wind tunnel allowing the use of a large
scale model with fairly thick boundary layers.

Measurements on a swept-wing half-model at transonic and
high subsonic speed were carried out by Spaid and Roos (1983)
(see also Spaid 1984). The data at the higher Mach numbers
suffer from some flow unsteadiness due to shock movements.
Flight measurements on the wing boundary layers of a Saab
Lansen aircraft have been performed by Bertelrud (1984) at
various high subsonic and transonic speeds. A large amount of
data has been gathered in many flights.
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EXPERIMENTS: 3D B.L. FLOW ON BODIES
OF REVOLUTION

RAMAPRIAN, PATEL,CHDI, 1081
(NO TURB. DATA, M<<1|

MEIER, KREPLIN,
VDLLMERS, 1983

{INCL. TURB. DATA M<<1l
TRANSITIDNAL ARD
TURBULENT FLOW

SMITT, CHANETZ, 1985
(INCL. TURB. DATA, M<<1}

AUSHE RMAN, YANTA,_ 19¢3
(ND TURB.DATA, M > 1)

)

USE DF EXPERIMENTAL DATA

TO PRODUCE CORRECT RESULTS
CALCULATION METHODS MUST:

1) SDLVE THE EDUATIONS CORRECTLY
#) SOLUTION STABLE AND CONVERGENT?
b) NUMERICAL ERROR ACCEPTABLE?

ERRDR VEASUS MISTAKE : INDEPENDENT CHECKS
RECOMMENDABLE (WDRKSHOPS)

#) SDLVE THE CDRRECT EDUATIONS

#) NEGLECTED TERMS INDEED NEGLIGIBLE?
b} EMPIRICAL ASSUMPTIONS CORRECT 7

CHECK OF EMPIRICAL ASSUMPTIONS IS
USUALLY THE MAIN OBJECTIVE OF
THEORY EXPERIMENT COMPARISONS

EMPIRICAL ASSUMPTIONS

INTEGRAL METHOOS: VELOCITY PROFILE
FAMILY, SKIN FRICTION LAW, £Tc.

FIELO METHOOS: TURBULENCE MOOEL

@ NO REAL PROSPECT FOR UNIVERSAL PROFILE
FAMILY, SKIN FRICTION LAW, ETC.

@ NO SOON PRDSPECT FDR UNIVERSAL TURBULENCE MODEL

CONSEQUENCE:

CHECK OF EMPIRICAL ASSUMFTIONS IS
DNLY USEFUL IN EXPECTED VALIDITY RANGE
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The three-dimensional boundary layer flow around slender
bodies of revolution at angle of attack leads further down-
stream generally to two open separation regions at the lee-
gide of the body. This flow has been studied also by several
investigators. Ramaprian, Patel and Chol (1981) investigated
the turbulent boundary layer on a hemisphere-spheroid combina-
tion at a moderate angle of attack. A prolate spheroid at
various angles of attack and various Reynolds numbers was
measured by Meier, Kreplin and Vollmers (1983). Measurements
were carried out without a transition trip, so that a large

transitional region was present especially at the

lower

Reynolds numbers, and for some conditions also with a transi-
tion trip leading to a turbulent boundary layer in the mea-
surement region. The three-dimensional laminar and turbulent
boundary layer on an ellipsoid-cylinder model at high angle
of attack was investigated by Schmitt and Chanetz (1985). The
measurements were focussed here particularly on the develop-

ment of the open separation into a vortex.

The supersonic

turbulent boundary layer on a conical body at angle of attack
was measured by Ausherman and Yanta (1983).

USE OF EXPERIMENTAL DATA

In an early phase of research experiments, have chiefly an
exploratory character, the main aim being to make evident the

prevailing physical mechanisms.

In later phases experiments

often serve more directly as test cases for calculation me-
thods to assess their accuracy and to improve the calculation
methods where necessary by tracing the origin of apparent
discrepancies by detail comparisons with the experimental
data. In boundary layer research the emphasis is presently on
the use of experiments as such test cases.

Calculation methods should, of course, in the first place

solve the mathematical equations correctly.

The numerical

solution should be stable and convergent and the truncation
error small, but also the computer program should be free of

faults, which is difficult to ascertain in practice.

It is

therefore sensible to take advantage of Workshops in which
other (possibly very similar) calculation methods have been
applied, which results can be used in a way as a check,
Besides solving the equations correctly, the correct equa-
tions ahould be solved. No non-negligible terms should have
been ommitted in the equations and the terms containing empi-
rical approximations should be sufficiently accurate. The
investigation of the accuracy of the empirical assumptions is
actually the principal objective of most theory experiment

comparisons.

The empirical assumptions in calculation methods depend on
the type of method. Integral methods generally assume a pro-
file family for the stream-and cross-wise velocity, a skin-
friction law and at least one further empirical relation, for

instance about the turbulence entrainment rate.

In field

methods the empiricism is contained in the turbulence model.
Mathematically simple turbulence models may be used, relating
algebraically Reynolds stress and mean velocity gradient, as

well as more sophisticated models,

in which the Reynolds

stresses are related to the mean flow by partially empirical
differential equations based on the Reynolds stress transport

equations.

There is no real prospect for a truly universal boundary
layer velocity profile family with a limited number of para-
meters, for a universal simple skin-friction law, etc. One of
the conclusions of the 1980-81 Stanford Conference has been
that there is a yet also no universal turbulence model avail-
able and it seems that there 1s no soon.prospect for such a
universal model. This conclusion has important consequences
for theory experiment comparisons. As emphasized already ear-
lier in this paper, the restricted validity of the empiricism
implies that checks of the empirical assumptions are only
useful in flows approximately similar to the flows in which

the empiricism 1s expected to hold.

This normally means

checks in the class of flows, to which the calculation method

is expected to be applied.
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THEORY EXPERIMENT COMPARISON

APROPER COMPARISON BETWEEN
CALCULATIONS AND MEASUREMENTS
REOUIRES:

& CONSIDERA TION OF THE NUMERICAL
AND EXPERIMENTAL ERRORS IN THE
COMPARISON DATA

® INVESTIGATION OF THE EFFECT OF
VARIATIONS IN THE BOUNDARY CONDITIONS
WITHIN THE EXPERIMENTAL ERROR BAND

® INVESTIGATION OF THE EFFECT DF
VARJATIONS IN THE EMPIRICAL
ASSUMPTIONS TD ASSESS THEIR
HOLE IN THE FLOW DEVELOPMENT

LN

EXAMPLE OF A THEORY EXPERIMENT COMPARISON

EXTERNAL
/— STREAMLINE

VAN DEN BERG
ELSENAAR INFINITE
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MODEL FOR DIFFERENT BOUNDARY CONDITIONS IBERLIN WS}
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When comparing calculation results with experimental data,
both measurement errors and numerical errors should be consi-
dered. Generally attention is focussed particularly on the
error in the experimental comparison data and the error in
the calculation results for the given boundary conditionms.
However, the boundary conditions are based normally on measu-
rements and, therefore, are also subject to a possible error.
To investigate the effect of such measurement errors, addi-
tional calculations must be carried out for different bounda-
ry conditions, Calculations msy be performed, for instance,
for different initial flow conditions within the experimental
error band, and for different surface pressure distributions,
with an increased or decreased pressure gradient, so far the
error band of the measured pressures allows.

To draw a balance conclusion from a theory experiment
comparison, generally it is recommendable to add an inves-
tigation of the role of the empirical assumptions on the
calculated flow development. If the role would be small,
obtained agreement between calculations and measurements
may not mean much., As an example strongly pressure-driven
flows may be considered, in which the Reynolds stresses have
little effect on the mean flow development: Agreement between
calculated and measured mean flow quantities then tells
little about the accuracy of the assumed Reynolds stresses in
the calculations. This can only be judged when direct compa-
risons with measured Reynolds stresses can be made.

As an example the results of an extensive comparison be-
tween three-dimensional turbulent boundary layer calculations
and experiment will be discussed. The case considered is an
infinite swept wing flow, where the boundary layer is very
nearly two-dimensional at the initial station and where
three-dimensional separation takes place near the end of the
measurement region, Many calculation methods have been ap-
plied to this case, so that suitsble calculation results to
illustrate the theory experiment comparison could be drawn
from various sources. The comparisons will be focussed here
on measured and calculated wall flow angles. The experimental
accuracy estimate for the wall flow angle is * 1°, while the
numerical error in the calculation results depends on the
method used, but is expected to be certainly not larger.

The first graph shows the results of a study by Hoekstra
of the effect of a variation in the empirical assumptions,
Calculations with a conventional algebraic isotropic eddy
viscosity turbulence model sre seen to underestimate substan-
tially the wall flow angle increment in the downstream part
and clearly fail to predict separation. With the eddy visco-
sity somewhat reduced (following Nituch, Sjolander, Head
1978), but still isotropic, agreement with experiment appears
to exist to much further downstream. The results demonstrate
that the empirical sssumptions about the Reynolds shear
stresses have an important influence on the flow development.

The next two graphs show the effect of variations in the
boundary conditions, These graphs and the preceding one have
been taken from the Berlin Workshop (Van den Berg et al
1986). The upper graph contains calculations by Cross with
his integral method for different initial conditions. The
measured initial wall flow angle is 1,5° and calculationms
have been carried out for this angle and a slightly larger
initial wall flow angle. The effect on the calculation re-
sults is seen to be small up to a streamwise distance x =~ 1,1
m, but further downstream the two sets of calculation results
start to deviate disproportionally.

The lower graph shows the results of calculations by
Schneider with a non-isotropic eddy viscocity model for dif-
ferent pressure distributions. The eddy viscosity non-isotro-
py applied is as proposed by Rotta (1977). With the normal
boundary condition, i.e, the measured surface pressure dis-
tribution, the calculated wall flow angle increment is seen
to fall below measurements already at x =~ 1.1 m. When the
measured pressure at the boundary layer edge is used, agree-
ment with experiment is maintained essentially further down-
stream, although the difference in pressure is small (ACp <
0.01 upstream of separation). The results demonstrate the
sensitivity of the calculation results for the boundary con-
ditions in the downstream part of the measurement region,
near separation.
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It is well known that boundary layer calculations carried
out as done here, constitute an ill-posed mathematical pro-
blem at separation. If the singularity at separation is no
part of the computational region, i.e. if the calculations
are stopped before separation is reached, no problem exists
in prineciple, but in practice the calculations may become
very sensitive for the boundary conditions already upstream
of separation. To assess the sensitivity of the calculations
for the boundary conditions, a systematic investigation was
performed by De Bruin (1983). The pressure gradient was in-
creased over the whole measurement range by a small amount,
Calculations were carried out with a standard type isotropic
eddy viscosity model and with the same model with a reduced
eddy viscosity in the boundary layer outer region. The re-
sults are depicted in a plot showing the angle (o + B ) in-
stead of B_ as in the preceding graphs. It is eviden¥ that
with the réduced eddy viscosity the calculations come close
to separation, and that the results near separation are very
sensitive to small pressure gradient changes. It appears
also, however, that the calculations with the standard eddy
viscosity model are not unduly sensitive to pressure gradient
changes. The sensitivity of the calculations to the boundary
conditions seems to depend on the turbulence model used.
The important point is, of course, whether separation is ap-
proached in the calculation or not.

The calculation problems near separation can be resolved
by carrying out the calculations in a different way, for in-
stance by inverse calculations prescribing the distribution
of measured boundary layer properties over the surface in-
stead of the pressure distribution. Such inverse calculations
have been performed by various workers, but here the results
of Abid and Smitt (1984) will be considered. They used the
measured stream- and crosswise boundary layer displacement
thickness as an input for the calculations. In the graphs
shown here the angle (o + B ) computed with a standard alge-
braic eddy viscosity model "has been plotted as well as the
calculated surface pressure distribution, which is part of
the output in inverse calculations. The calculated wall flow
angles are somewhat high, but on the whole agreement with
experiment is reasonable. Actually this should not be sur-
prising, however, as the stream- and crosswise displacement
thickness agree from the outset, which means that the general
level of the cross flow in the boundary layer is necessarily
the same in calculations and experiment, so that large dif-~
ferences in the skewing angle in the boundary layer are not
likely. Comparison of the calculated and measured pressures
shows larger differences. The computed surface pressure
gradient is essentially too large. On this ground one should
conclude that agreement between calculations and measurements
is not good here.

Abid and Smitt subsequently carried out inverse boundary
layer calculations in the same way as described before, using
different turbulence models. One of the models applied is an
algebraic stress model, which is a simplification of the full
solution of the six transport equations for the Reynolds
stress components (Launder 1971, Rodi, 1972). The results
obtained with this turbulence model are depicted in the graph
shown here. The agreement between calculations and measure-
ments for the wall flow angle is reasonable, but not very
good and certainly not better than obtained eariier with a
simple standard algebraic eddy viscosity model. The real im-
provement becomes evident when considering the surface pres-
sures. Agreement between calculated and measured pressures is
seen to be very good indeed with the algebraic stress model.
Detail comparisons between calculated and measured Reynolds
stresses (not shown here) also exhibit fairly good agreement.
The agreement can never be perfect, however, as the algebraic
stress model leads to an isotropic eddy viscosity, while the
measurement results indicate a distinct eddy viscosity non-
isotropy. Though a completely satisfactory agreement also
does not exist here, the improvement achieved with this
turbulence model is evident, especially in the comparison of
calculated and measured pressures.
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@ POSSIBLE COMPARISON PROCEDURES

® DIRECT CALCULATIONS

INPUT: MEASURED SURFACE PRESSURE
(AND FLDW ANGLE AT B.L. EDGE)

ND SENSIBLE COMPARISONS POSSIBLE IF
CALCULATIONS APPRDACK SEPARATION

# INVERSE CALCULATIONS
INPUT. MEASURED 8.L. PROPERTIES

ASB.L DATA AREPARTLY GIVEN,
COMPARISONS SHOULD FOCUS DN
SURFACE PRESSURE (GRAOIENT)

® INTERACTIVE CALCULATIONS
INPUT: MEASUREO BOUNOARY CONDITIONS
1N INVISCID FLOW WELL OUTSIDE B.L.
PREFERABLE PROCEDURE FOR THEORY

EXPERIMENT COMPARISONS, WHICH
INCLUDE A SEPARATION REGION

@)

@ PRESENT STATUS AND PROSPECTS
THEORY EXPERIMENT COMPARISONS PERFORMED
SHOW:

~ DIRECTIDN OF SHEAR STAESS {37, ¥w')
AND VELDCITY GRADIENT | 373y, 3W/y)
DD NOT COINCIDE 1N 30 B.L"

~MAGHITUDE DF SHEAR STAESS (v, V)
65 SMALLER 18 3D B.L% THAN IN
EQUIVALENT 20 B.LY

~ IN GENERAL TURBULENCE ACTIVITY SEEMS
TO DECREASE AS THE MEAN FLOW
BECOMES THREE-OIMENSIONAL

An other possibility to circumvent the calculation pro-
blems near separation is by viscous inviscid interaction
calculations. Such calculations were carried out for this
case some time ago by Elsenaar et al (1975), using a simple
approximate interaction model. As discussed earlier in the
review of experiments, the test set-up considered here con-
sists of a flat plate with a swept wing-like body suspended
above the plate. This means that the flow can be regarded as
a duct flow with an inviscid core and a boundary layer on the
flat plate and the body. Assuming that both boundary layers
are approximately of the same thickness and that the core
flow is quasi-one-dimensional, a simple interactive flow cal-
culation is possible with the pressure a function of the duct
height minus the displacement thickness of the boundary
layers. The results of these calculations are presented here.
Calculations have been performed with two turbulence models:
the original model of Bradshaw (1967) and an adapted version
reproducing the measured Reynolds stresses. The interesting
feature of calculation results obtained in this way is that
they give a better evaluation of the consequences of wrong
turbulence modelling in practical viscous-inviscid calcula-
tions. As shown here, 1in such calculattons separation is
still predicted even with a less accurate turbulence model,
but it is predicted too far downstream.

The various possibilities to compare boundary layer calcu-
lations with experiment will be recapitulated here. In the
first place direct calculations may be carried out with the
measured surface pressure distribution as an input. For cal-
culations carried out in this way, no sensible comparisons
with experiment are possible if the calculations approach
separation.

The second possibility is to perform inverse calculations
using measured boundary layer properties as an input. For
three~dimensional boundary layer calculatioms two properties
are generally provided. As this means that the boundary layer
development is for a significant part given in the calcula-
tions, the comparison with experiment should focus on calcu~
lated and measured surface pressures, or actually pressure
gradients, since these are the driving forces for the'flow.

Finally theory experiment comparisons can be made by
viscous inviscid interaction calculations. Then part of the
inviscid flow should belong to the region to be computed, so
that measured boundary conditions should be available well
outside the viscous flow in the inviscid flow region. Though
few experiments exist, which provide such boundary condi-
tions, interactive calculations seem in principle the prefer-
able procedure for comparisons with experiments, which
include a separation region.

PRESENT STATUS AND PROSPECTS

As turbulence is essentially three-dimensional, it was
generally expected originally that turbulence models for two-
dimensional flows could be applied without change to three-
dimensional boundary layers. More and more experimental evi-
dence has become avajlable, however, which shows that this is
not true, While a straightforward extension of most turbulen-
ce models to three dimensions leads to an isotropic eddy vis-
cosity, i.e. a shear stress in the direction of the velocity
gradient, measurements consistently show that these direc-
tions do not coincide. Moreover measurements indicate that
the Reynolds shear stresses are substantially smaller than in
two-dimensional boundary layers in equivalent conditions.
Turbulence activity in general appears to have decreased in
three-dimensional boundary layers. A recent survey of these
experimental findings is contained in Bradshaw (1986).

The fact that the three-dimensionality of the flow affects
so strongly the turbulence properties-can only be explained
when realizing the important role of the large eddies in tur-
bulent flows. The structure of the large eddies will be dis-
torted when the mean velocity profile in the boundary layer
is skewed and so their development may be obstructed, leading
to a decreased turbulence level in three-dimensional boundary
layers.
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dies, whose properties are not easily generalized, universal-
ity of empirical assumptions about turbulence is difficult to
EXPERIMENTS: achieve and in any case has not yet been achieved. This means
that checking empirical assumptions is at present only useful
in the flow conditions, where the empiricism is expected to

As a consequence of the important role of the large ed-

— ONLY FEW MEASUREMENTS PERFONMED IN
30 BL"sWITH FLOW PARAMETENS CLOSE

O THE VALUES IN PRACTICAL 30 8.Ls hold. Unfortunately many of the experiments performed do not
e P an e e s g simulate practical flow conditions. Generally the boundary
RELIABLE TURBULENGE DATA [N CONDITIDNS layer 1s thick in the experiments relative to the length of
SIMILAR TOTHOSE (N FRAGTICAL FLOWS the measurement region, which often leads to pressure forces,
~ NEED FOR FUNDAMENTAL AESEARCH TD which are comparatively large, and a tendency of turbulence
IMPROVE INSIGHT IN TURBULENT PROCESSES history effects to dominate the turbulence development.

IN3EBL In view of the above, it is clear that there is a need for

three-dimensional turbulent boundary layer experiments
providing reliable data in £flow conditions, which better
resemble those in practical flows, In addition fundamental
experiments should be carried out to shed more light on the
turbulent processes 1in three-dimensional boundary layers.
Initiative has been taken to perform more extensive collabor-
ative experiments in this field (Humphreys, 1983). Since some
time numerical simulations of turbulence by solving the
Navier-Stokes equations have come within reach and these may
provide a new means to augment knowledge about turbulence,
also in three—~dimensional boundary layers, as detail informa-
tion can be made avallable not easily obtained from measure-

\. —_ ments.
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THREE-DIMENSIONAL BOUNDARY LAYERS :
LAMINAR-TURBULENT TRANSITION
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SUMMARY

The first part of this paper is devoted to a brief survey of transition problems in two-dimensional flows.
The main elements of laminar instability theory are presented and used for elaborating some practical tran-
sition criteria. In three-dimensional situations, the problem is much more complex, because transition
may occur through streamwise instability, cross-flow instability or leading edge contamination. It is
assumed that the streamwise instability can be studied by using two-dimensional results. On the contrary,
the cross.flow instability and the leading edge contamination constitute typical features of three-
dimensional flows, as it is illustrated by experimental results., The extension of linear stability theory
to these last problems is discussed, and transition criteria are developed. Moreover an "intermittency
method" allows the transition region to be calculated. These techniques are applied to swept wings and
bodies at incidence.

MAIN NOTATIONS

X, 2, ¥ general coordinate system
Xy 2, ¥ streamline coordinate system -
u, W, V velocity components in (x, z, y)
U, W, v velocity components in (X, Z, y)
a', w', ¥, p' complex velocity and pressure fluctuations
u', w', v', p' physical disturbances (real parts of @', w', V', p')
u'vT, YT Reynolds shear stresses
c chord normal to the leading edge
£* frequency
F = 222;2 dimensionless frequency
Ue
hi, h2 metric coefficients in the X and Z directions
ﬁ wave number vector
Tu free-stream turbulence level
Op normal angle of attack
Bh Hartree's parameter

intermittency factor

§ boundary layer thickness

s
€=3- P
6o angle between the X axis and the external streamline .
b wavelength

92 due

A2 =5 T Pohlhausen parameter
v kinematic viscosity

[ circumferential angle
q’ angle of sweep
v

. b g
angle between the external streamline and k
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Two—dimensional boundary layer parameters

cf skin friction coefficient
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H=2061/8 shape factor
u X
Rx = v
ugh
RO = 5 Reynolds numbers
ue 84
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Three~dimensionnal boundary layer parameters

© u
81 = j 1 - = d
1 i ( ue) y

8
o u .
811 = { ug (1 ue) dy

o e
H = 68:1/811 streamwise shape factor
ROy, = uebii

v

Reynolds numbers

8
RS2 = ueSz _ 1 j- wdy
v o vie

Subscripts

cr critical

e free~stream

E ' end of transition
i imaginary part

1 laminar

r real part

t turbulent

T transition onset
® upstream

1 -~ INTRODUCTION

Since the classical experiments performed by Osborne Reynolds (1883), the instability of laminar flows
and the transition to turbulence have maintained a constant interest in fluid mechanics problems. This
interest results in the fact that transition controls important hydrodynamic quantities such as drag or
heat transfer. The present paper is devoted to a general survey of transition calculation methods, in
three—-dimensional, incompressible flows. Most of these methods do not claim to represent the intricate
physics of the transition process : they only constitute short term answers to practical problems.

Before to examine the difficulties associated with three-dimensional configurations, it is necessary
to do a short review of .the most important results obtained in two-dimensional flows ; this necessity
arises from the fact that the properties of two-dimensional boundary layer profiles are similar to those
of streamwise profiles in tiree-dimensional flows. As it can be expected, new problems will appear in the
latter case due to the presence of cross-flow profiles.
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2 - TRANSITION IN TWO-DIMENSIONAL FLOWS

2.1 General considerations

An overall picture of the boundary layer development on a given body is shown on figure 1, From the
leading edge to a certain distance X, the flow remains laminar ; in the zero pressure gradient case, for
instance, the shape factor is constant and equal to the Blasius value 2.591. At xp, turbulence structures
appear and tranmsition occurs. From ¥y to xg, there is a noticeable change in the boundary layer properties :
the process of transition involves a large increase in the momentum thickness © and a large decrease in
the shape factor H. As a result, the displacement thickness 81 = HO exhibits a more complex evolution.

The skin friction coefficient Cf increases from a laminar value to a turbulent one, the latter being in
some cases an order of magnitude greater than the former.

It is obvious that the location and. the extent of the transition depend on a large range of para-
meters, such as free-stream turbulence, pressure gradient, noise level, vibrations, roughness, suction
or blowing, wall curvature... In this paper, only the first two parameters will be considered ; an over-
all description of the effects of the other factors can be found in /1/.

2,1,1 Influence of free-stream turbulence

The effect of free-stream turbulence on transition location is shown on figure 2, where the transition
Reynolds number Rxp is plotted as a function of the external turbulence level Tu. These experimental results
were obtained for a constant external velocity ; the high values of Tu, such as those used by Hall and
Hislop, are achieved by installing grids just upstream of the test section.

At first sight, the experimental data seem to collapse onto a single curve : transition moves rapidly
upstream when Tu increases. This effect appears to be very strong : the value fo Ry corresponding to
Tu = 0,3 1072 is about three times greater than that corresponding to Tu = 1.5 10-%, On the other side,
it is obvious that Rxp depends not only on the root-mean-square value of the free-stream turbulence, but
also on its spectrum. This is illustrated on figure 3, which presents an enlargement of the previous graph,
for the lower values of Tu, say Tu <0.3 10-%, As Tu becomes very small, the data of Schubauer-Skramstad
/2/ and those of Wells /3/ exhibit the same trend, in the sense that Rxqp reaches a constant value. But
this value is about 2.8 10° in /2/ and about 5 10° in /3/. In fact, sound component controls transition
when Tu is very low, and the effect of "true" free-stream turbulence can be only observed at values of

Tu greater tham 0.2 1072,

2.1,2 Effect of streamwise pressure gradients

a) - Positive pressure gradients

The influence of a positive pressure gradient is illustrated in figures 4 et 5, where are presented
typical experimental results obtained at ONERA/CERT/4/5/. Figure 4 shows the evolution of the shape factor
as a function of Rx, for six external velocity distributions ; the case A corresponds to a nearly constant
velocity distribution ; from case B to case F, the pressure gradient becomes stronger and stronger, but
transition always occurs before laminar separation as-indicated by laminar calculations. In the following
lines, we will define the transition onset as the location where the shape factor exhibits a sudden nega-
tive slope. The free-stream turbulence level Tu is nearly constant from one configuration to another and
is equal to about 0.2 1072, Another presentation of the results is given in figure 5, where the momentum
thickness Reynolds number taken at the transition onset is plotted as a function of the shape factor at
the same location. It can be seen that the transition Reynolds number decreases rapidly when the pressure
gradient intensity increases. '

When the pressure gradient is very strong, the laminar boundary layer often separates and transition
may occur in theseparated layer : it is the problem of separation bubbles occuring, for example, near the
leading edge of an airfoil at incidence, downstream of the suction peak. In this case, there is an inter-
action between viscous and inviscid flows, so that the external velocity distribution depends strongly
on the chord Reynolds number.

b) - Negative pressure gradients

Detailed transition experiments in negative pressure gradients are not numerous. As the flow accelera-
tion acts to.stabilize the laminar boundary layer (see paragraph 2.2.3), the lengths required for such
studies would be too important in laboratory conditions, except if the free-stream turbulence level is
high. In such cases, the external turbulence tends to counteract the favourable effect of the negative
pressure gradient. This interplay can be encoutered in many practical situations such as turbomachi-
nery and was investigated, for instance, by Turner /6/ and by Blair and Werle /7/.

2.2 Laminar instability

This theory constitutes the first attempt to describe the initial stages leading to transition in a
laminar boundary layer ; it postulates the existence of small, regular oscillations travelling in the
laminar boundary layer, eventually growing and inducing turbulence. This idea was expressed many decades ago
by Rayleigh (1887) and Prandtl (1921). Some years later, Tollmien and Schlichting worked out a complete
theory of boundary layer instability, so that the waves are often named : "Tollmien-Schlichting waves'.
Thecelebrated experiments of Schubauer and Skramstad /2/ (1948) confirmed most of the numerical results,
so that the stability theory is of first importance for studying transition problems.
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2.2.1 Orr-Sommerfeld equation

A compleﬁe account of the stability theory can be found in /8/. Some important results will be recal-
led in this chapter.

Let us consider two dimensional disturbances, the components of which are assumed to be of the form :
\ﬁ' £(y)
v o (y)

Pressure fluctuations are also introduced :

exp [i (ax - mt)] (1)

- iox - wt
31= m(y ot J : @

f, ¢ and T are complex amplitude functions, o and ®w can be either real or complex, so that, in the
general case, i', ¥' and p' are complex quantities. The physical disturbances u', v' and p' are the real
parts of u', ¥' and p'.

It is often assumed that the mean flow is parallel : Vv = Q0 and u depends only on y. This means that the
boundary layer does not grow in the streamwise direction. The introduction of relations (1) and (2) into
the continuity and momentum equations leads to the Orr-Sommerfeld equation, after linearization and elimina-
tion of pressure :

2
oV = 2026 + 0% - 1R [(ou - w) (¢" - a%) -ag—y‘z‘- ¢/ =0 3)
© with boundary conditions :
$(0) = ¢' (0) = 0 at all the wall
9(y) and ¢' (y)+0 when y + %)

All quantities were made dimensionless with a reference velocity V and a reference length L, usually
linked with the boundary layer thickness (displacement thickness, momentum thickness, laminar length scale
x/VRX, for instance). The Reynolds number R is equal to VL/V. The primes denote differentiations with
respect to the y direction.

The mathematical nature of the two principal parameters o and w leads to two theories : the spatial
theory and the temporal theory.

. In the spatial theory, w is a real quantity, which répresents the circular frequency of the wave,
and o is complex : a = a_ + io,. Any fluctuation q' (q' represents u', v' or p') takes the form :

31 =cq(z)e —ayx ei(ozrx- wt) (5

The amplification factor a4 determines the degree of amplification (®i<0) or damping {ai>0), and
o denotes the wave number of the perturbation,
. In the temporal theory, & is real and w is complex :

. wyt ei(dx - w.t) (6)

q' = q(y) e

It is possible to convert a temporal to a spatial amplification rate by using the relation derived by
Gaster /9/ :

wi

RERETWEr )

where Vg = 36:/30 1is called the "eroup velocity”.

2,2.2 Stability diagram - Local and total amplification rates

Due to the homogeneous boundary conditions, the problem is an eigenvalue one : when the mean velo-
city u(y) is specified, a non zero solution of (3) is obtained for particular combinations of R, o and w.

The Orr-Sommerfeld equation was solved by many authors. Some results gf such cgmputations for the Blasius
flow are represented on figure 6, where L = §; and V = Ue, so that w = 2Mf 81/u, (£° is the physical fre-
quency). The figure shows some curves of constant amplification rate @, in the (w, RS1) plane ; curves of
constant wave number &_ are not represented for clarity. In this diagram, curves of constant frequency
F = 27f v/ue? = /R appéar as straight lines through the origin. The locus &, = 0, called the neutral curve,
separates the region of stable disturbances from that of unstable disturbances. In particular, there is a
value of the Reynolds number below which all disturbances decay : it is the critical Reynolds number,

R61cr, which is slightly greater than 500.

Figure 6 indicates that a single frequency wave travelling in the lamipar boundary layer is at first
damped, then amplified, and again damped as it leaves the unstable region. An important parameter is the
total amplification rate defined as :

X
ﬁ;=exp [L—ai dx] (8)

o]
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A is the wave amplitude and the index 0 refers to the streamwise position where the wave enters the
unstable region., Figure 7 shows total amplification curves corresponding to various frequencies, obtained
for the Blasius profile. The dashed line represents the envelope of these curve, which will be called n :

n = Max {Xn{i&J] at a given x or R§; 9

F o

It is obvious that n =0 for R§; = RGlCr

2.2.3 Effect of pressure gradient

The same type of calculation can be performed for the self similar velocity profiles of the Falkner-—
Skan family. Let us recall that theses profiles correspond to exterhal velocity distributions of the form :

Ue = kx™

For each value of m, the mean velocity profile % {% Vﬁ;) and the following boundary layer- parameters
remain inchanged in the streamwise direction : e

2m
Bh = =T (Hartree parameter)
» du
Ay = 8 _ e (Pohlhausen parameter)
v dx
H=268,/8 (shape factor)

CEf RO, R&/V/Rx ...
2

The main result .of the stability calculations is that basic velocity profiles with an inflexion point
(decelerating flows, A;<0, H>2.591) are more unstable than those developing in negative pressure gradients
(accelerating flows, A»2>0, H<2.591)., This is illustrated on figure 8, where four similarity profiles are
plotted. The dashed curve is the Blasius profile (B, = Az = 0). The profile with Bh = ] represents the
two-dimensional stagnation point profile, and the other two curves correspond to positive pressure gra-
dients ; for these profiles, the inflexion point is indicated by a cross ; the value Bh = - 0.1988 charac-
terizes the separation profile.

The destabilizing effect of positive gradients can be seen on figure 8b, which shows the neutral curves
associated with the preceding profiles. When the shape factor increases, the critical Reynolds number
decreases, the amplification factors become larger and larger, and the range of unstable wave numbers in-
creases rapidly. In addition, important theoretical results were obtained by Lord Rayleigh (1880) and
Tollmien (1935) by consider%ng equation (3) in the limit of infinite Reynolds number :

d“u

(Qu~w) (9" - o) = ogz ¢ = 0

A study of this inviscid equation leads to the following conclusions :

. mean velocity profiles without inflexion point (flat plate and accelerating flows) have a neutral
curve which tends to be closed at large Reynolds number. This is the case for profiles corresponding to
Bh = 0 and ! in figure 8b, their behaviour is dominated by a viscous instability.

. on the contrary, for mean velocity profiles having an inflexion point (decelerating flows),there is
always a range of unstable frequencies as the Reynolds number goes to infinity. This is clearly visible
on figure 8b for By = - 0.10 : for large values of R§;, the upper branch of the neutral curve tends towards
an asymptote (for the separation profile, this asymptote is out of the range of wave numbers represented on
the figure). It is so-called inflexional instability, which plays a dominant role in three-dimensional
flows.

For several values of H, the envelope curves defined by (9) are plotted on figure 9. The pressure gra-
dient effects can be clearly pointed out : as the shape factor increases, the critical Reynolds number de-
creases and the slope dn/dR§; increases. This leads to the intuitive conclusion that transition will
occur at lower Reynolds numbers in positive pressure gradients than in negative ones : this result is con-
sistent with the experimental trends (paragraph 2.1.2).

Up to now, we considered only two-dimensional waves (i.e.waves, the crest of which travel normally to
the main flow). A more general expressioncan describe the obliquel three-dimensional waves :

@', v', @' B = (£(), 94, h(y), T(y)) exp |1 (ox + Bz - wt)] (10)

In fact, it can be demonstrated that, using the temporal theory, instability appears first for a
two-dimensional disturbance :; it is the celebrated Squire's theorem. For this reason, oblique waves are
usually neglected in two-dimensional problems. However, when the mean flow is three-dimensional, the
oblique waves must be taken into account.
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2,2.4 Stability and transition

Since the experiments of Schubauer-Skramstad,much work has been done in order to check the stability
theory results, either in natural or in artificial-conditions.The experiments have revealed that the Tollmien-
Schlichting waves constitute effectively the first stage in the transition process, for low free-stream
turbulence levels. In a general manner, the measured frequencies, amplification rates, amplitude profiles
were found in good agreement with nnmericalresults. When transitiom is approached, non linear mechanisms
take place, and the linearized equations are no longer valid ; however, the non linear phase occurs over
a relatively short distance, so that the linear stability controls most of the transition process.

The problem is that the theory is unable to predict the transition onset, and the link between stabi-
lity and transition can only be done through experimental results. In this respect, Smith and Gamberoni
/10/ and Van Ingen /11/ developed independently the well known "e™method". In the genmeral case where
the flow is not of a constant By-type;these authors calculated at first the laminar boundary layer develop-
ment ; the second step was to use the stability charts established by Pretsch for self-similar velocity
profiles ; the envelope curve was obtained by computing the growth of waves of different frequencies.
Smith and Gamberoni compared stability calculations with measured transition points, and transition was
found to occur wheg n 2 9. This means that transitiom occurs when the most unstable frequency is ampli-
fied by a factor e’. The same result was obtained by Van Ingen, but with the exponential factor equal to
7 or 8,

The succes of the e9 method is certainly due to the fact that the experimental data were obtaing%.in
wind tunnels where the free-stream turbulence level was similar and rather low, let say Tu = 0,1 10 °.
For higher values of Tu, the transition Reynolds number decreases rapidly, and the e” method no longer
applies, Mack /12/ suggests an empirical relation between Tu and the value of n at the transition location :

ngp = = 8.43 = 2.4 1n Tu (11)

This relation has been established to fit the experimental results collected by Dryden for the flat
plate case /13/. Its application to adverse pressure gradients has given fairly good results /!14/. However,
two remarks are to be made :

. For Tu < 10™%, sound disturbances may become the factor controlling transition rather than turbu-
lence, and application of (11) may give poor results.

. For high values of Tu (Tu > 2 or 3 102), transition often occurs without appearance of Tollmien-
Schlichting waves, at Reynolds numbers lower than the critical Reynolds number, The linear processes are
completely "bypassed" and the e™ method has no significance.

2.3 Transition criteria

The word criterion can be interpreted as a more or less empirical correlation between boundary layer
parameters at the transition onset. Transition criteria are often used for practical applicatioms, because
they are easily introduced in engineering prediction methods such as integral methods. Although the fun-
damental mechanisms of the transition process do not appear as clearly as in the stability calculations,
they provide a fairly acceptable compromise between accuracy and simplicity.

For two-dimensional flows over airfoils, Michel /15/, 1951, correlated the values of two Reynolds
numbers at transition, RO and Rx. -

Granville /16/, 1953, developed a correlation which takes into account two important parameters,
namely the stability properties and the flow history :

. the stability of the boundary layer is characterized by the difference in momentum thickness
Reynolds number from the neutral stability point to the transition locationm.

. as the amplification of disturbances depends on the cumulative effect of pressure gradient, an
averaged Pohlhausen parameter is introduced :

1 Xrn2
- 82 du
Fog = ————— I - - & (12)
Xp ~ Xer Xer

These criteria were established by using experimental data obtained in low turbulence wind tunnels or
in flight tests ; they take into account the pressure gradient effects, for low values of Tu. More recently,
the influence of free-stream turbulence was introduced in practical criteria, see review in /l/.

For example, Arnal, Habiballah and Delcourt /17/, 1979, extended Granville's correlation on theoretical
basis. For this, the envelope curves computed for the Falkner-Skan profiles (figure 9) were used, as well
as Mack's relation (11). At first, the criterion was established for similarity flows (A2 = comstant) ;
for applications in more general conditions, A, is replaced by the averaged Pohlhausen parameters Az,
Curves corresponding to various values of Tu are plotted on figure 10. It can be observed that the proposed
criterion coincides practically with the Granville's onme for Tu = 0.05 1072 to 0.1 1072, An analytical
expression is ’

ROy - RO, = - 206 exp (25.7 Azp) [m (16.8 Tu) - 2.77 TGT] (13)

In order to apply relation (13), it is necessary to calculate Rﬁcr.
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For self-similar velocity profiles, the critical Reynolds number depends on a single similarity para-
meter, for example :

RO, = RO, (1) 14

An analytical representation of (14) can be found in Cousteix /18/.

For any non similar flow, R§ _ is computed as follows.The streamwise evolution of the thickness-—
momentum Reynolds number R@ is pigtted for the considered
case and is compared, at each abscissa, with the fictitious
critical Reynolds number RO associated with the local boundary layer
profile ; a simple solution 18 to use relation (14) in which the sub- RO
script er is replaced by crf. If RO < R@ f; the flow is locally stable. cr
If R6 > RO __, the flow is locally unstable. The true critical abscissa is
located accgge point where R6 = Recrf.

2.4 Intermittency methods

Let us assume that the transition onset is known. A second objective is to compute the transition
region itself, the extent of which may be as important as the laminar region which precedes it. An important
parameter characterizing the transitional boundary layer is the intermittency factor.Y, which represents
the fraction of the total time that the flow is turbulent. Most of the numerical models are based on the
so-called "intermittency method", in which laminar and turbulent quantities are weighted by Y.

The streamwise evolution of the intermittency factor was studied by various authors /19/ /20/ /21/.
The experiments performed at ONERA/CERT with zero and positive pressure gradients have shown that the
momentum thickness 6. at the end of the transition region was about twice the momentum thickness OT at
the transition onset. Therefore, relations of the form :

8 RO
6y) R,

can be adopted,

In the code developed at ONERA/CERT, the boundary layer development is computed by using the integra-
ted momentum equation and an auxiliary equation, such as the entrainment equation. At a given point in the
transition region, the laminar relationships give fictitious laminar parameters, such as the shape fac-
tor H; and the skin friction coefficient Cfj. In the the same way, H¢ and Cf. are deduced from turbulent
relatlonships. The corresponding parameters in the transition region are expressed as :

H=vyH + (1 -7 H (15)

Cf = yCfe + (1 - v) Cfg

withy=1-exp (45 ¢ - 1) (6
T

Intermittency methods have been applied to local equations by many authors. In the most simple models,
the turbulent shear stress is expressed as !

Liv? (s .
-u'v =Y\)ta—y- 17

where Vt is computed by using a classical turbulence model. Cebeci /22/ employed a mixing length scheme, the
intermittency factor being expressed by a relation proposed by Chen and Thyson /21/. A mixing length scheme
was also used by Arnal et al /23/ , who kept the assumption that y depends on 6/6. ; however, it was

found necessary to introduce an analytical expression somewhat different from (16) in order to obtain a good
agreement with experiments, see Coustols /59/.

2.5 Example of application

Figure 11 presents an example of application of the techniques described in paragraph 2.3 and 2.4. In
the considered case, transition occurs in a positive pressure gradient (case D of the experimental results
reported in figure 4), with a relatively low free—stream turbulence level. The transition onset is deter-
mined by relation (13), and the evolution from the laminar to the turbulent state is computed by the inter-
mittency method. Both calculations are in good agreement with experiments. Other applications can be found
in /1/ and /14/.

3 - EXPERIMENTAL EVIDENCE OF THREE- DIMENSIONAL TRANSITION PROBLEMS

During flight tests on swept wing aircraft conducted at the RAE between 1951 and 1952, Gray (see Poll
/24/) found that under certain conditions, transition moved towards the leading edge in a way which could
not be explained through a two-dimensional analysis. This sudden movement occured beyond a certain speed,
which appeared to be a function of the leading edge radius and the leading edge sweep. In addition, subli-
mation patterns indicated the existence of streaks almost aligned with the external streamlines and
regularly spaced in the spanwise direction.

Once recognized, the destabilizing effect of sweep back received rapid attention. By May 1952, two
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wind tunnel experiments (Anscombe and Illingworth, Gregory and Walker, see Gregory et al /25/) were perfor-
med ; they confirmed Gray's findings. Allen and Burrows (1956, /26/) and Burrows (1956, /27/) conducted
measurements in flight on the boundary layer formed on untapered swept wings. Some years later, Boltz,
Kenyon and Allen (1960, /28/)carried out extensive investigations into the dependance of transition position
upon Reynolds number, sweep angle and angle of attack in the Ames 12' Pressure Tunnel. Measurements have
been done in France by Schmitt and Manie /29/ and Arnal, Coustols and Juillem /23/, /30/ on an ONERA D
profile. Poll /24/, /31/ performed careful experiments on a swept cylinder and gave detailed information
about the flow developing close to the attachment line. Recently, a somewhat different approach was adopted
by Saric and Yeates /32/ and by Bippes and Nitschke (DFVLR GSttingen, work en progress) : a swept-wing
flow iscreated on a flat plate, the leadingedge of which is swept ; an appropriate wall bump is used to
obtain a specified pressure distribution. This method allows to avoid body curvature problems.

In all cases, transition was found to take place in regions of strong negative pressure gradients,
for sufficiently large values of the Reynolds number. Such a situation is inconceivable in two-dimensional
flow, where the accelerated regions stabilize the laminar boundary layer (paragraph 2.2.3) ; the three-
dimensional nature of the flow must be put forward in order to explain this motion. In addition, wall
visualizations techniques (sublimatiom, china-clay evaporation, oil-flow...) clearly indicate the presence
of streaks upstream transition onset. Figure 12 shows an example of sublimation result, obtained on an
ONERA D airfoil /23/ for P = 40°, o = - 8°, Q, = 8lm/s (¥, a_ and Qo are the angle of sweep, the angle of
attack and the wind tunnel speed, respectively) Blackregions? characterized by high values of the skin
friction coefficient, are visible near the leading edge (laminar boundary layer at low Reynolds number)
and beyond 25 or 30 % of chord (transitional and turbulent boundary layer). Between these regions, stream-—
wise striations can be observed ; due to their presence, the transition front exhibits a "sawtooth"
pattern in the spanwise direction. )

The flow on a flat disk rotating in still fluid with a fixed angular velocity represents another example
of three-dimensional flow. It is particularly convenient for stability analysis, because the steady laminar
flow is described by an exact solution of the Navier~Stokes equations. Experimental observations were repor-
ted by Gregory et al 7125/, Kobayashl et al /33/ and others, As in the wing experiments, stationary distur-
bances were found to exist in the laminar flow : they appear in the form of spirals,the axes of which. are
fixed relative to the surface of the disk, A china-clay photograph obtained by Gregory et al /25/ is pre-
sented in figure I3 : it shows laminar flow near the centre, and about 30 spiral vortices which cause tran-
sition to turbulent flow near the rim.

The mechanism of boundary layer transition on other spinning axisymmetric bodies was studied by many
authors. Spiralvortices were observed by Kobayaski and Kohama /34/ on a rotating cone, and by Kohama
and Kobayashi /35/ on a spinning sphere. Smoke visualizations were performed by Kegelman et al /36/ on
an axisymmetric model consisting of an ogive nose, a cylindrical midsection and a conical boattail.

In addition to the swept wings and rotating bodies problems, there have been several investigations
into more complex geometries. Eichelbrenner and Michel /37/ made transition measurements on an ellipsoid
with a slenderness ratio of 6 ¢ 1 at various incidences,

At zero incidence, the transition location was consistent with two-dimensional results ; however,
as the incidence was increased, the orientation of the transition front was modified by three-dimensional
effects. More recently, experiments on a prolate spheroid at incidence were performed by Meier et al /38/
typical results will be presented later on.

In parallel with the experimental work, theorétical studies were devoted to the understanding of the
physical phenomena. The investigations conducted by Stuart /25/ and others showed that the linear stabi-
lity theory was able to explain some of the experimental features. For this reason, is seems useful to
give the main elements of the stability theory in three-dimensional flows.

4 - LINEAR STABILITY THEORY IN THREE-DIMENSIONAL FLOWS

4.1 Stability equations

Let us define a set of orthogonal curvilinear coordimates X, Z, y. The X and Z coordinates lie in the
plane of the surface, y being normal to it, Elements of length in this system are hi dX, h2 dZ, dy. The
mean velocity components in the X and Z directions are U and W ; by using the parallel flow assumption,
the mean velocity v normal to the surface is set equal to zero, and U and W depend on y only. The velocity
and pressure fluctuations are denoted by u', w', v', p'.

The continuity and linearized disturbance equations are :

] 1 1
%T g% + %} 2% + %% + u'may + w'mi2 + v'(m1s + ma2s) = O (18)
' U %' W . _,dU . ' ' P U
%t Mo Tz tUEy o 2 We'may + mia(Wu' + Uw') + m1s Uv' = Fxg% + Dx (19)
' U W W ¢ AW ' ' ' ' 1 3p!
St +h1-8— +'ﬂ'2—8_'Z' + v a—y-+mzx(Uw + Wu') = 2 mz Uu +m23vW=--l;5£—+Dz (20)
v', U !
TR Ty - s Wl - mg wus - 4y e
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All the variables have been non-dimensionalized with a reference velocity V and a reference length L,
so that the diffusion terms Dx, Dz and Dy are proportional to 1, where the Reynolds number R is equal to

R
%&. The pressure is made dimensionless by pV2.
The "in plane” curvature coefficients are given by :
_ L oh, __L ahy 22

my; = hihz 3Z ’ m;, hyhy X (22)
The surface curvature coefficients are given by :
oy, <L h w, .ol 2

13 T h Ty > B23Th, 3y . (23)

The velocity and pressure fluctuations are assumed to be of the form :
(u', w', v', p') = Re [(f, h, ¢, M) exp [i(ax + BZ - wt)]J (24)

£, h, ¢ and 7 are complex amplitude functions. As in two-dimensional flow, a, B and w can be either
real or complex :

. In the spatial theory, t is real, ¢ and B are complex. It is possible to define a wavenumber vector
k ='(ar, Sr) and a amplification vector 3= (—oi, -Bi).

. In the temporal theory, o and § are real, w is complex. wy represents the temporal amplification
rate, whilst o and B are the components of the wavenumber vector k.

Introducing (24) in (18) - (21) leads to the following set of equations :

i |oo £ + Ro h] +¢' +my; £ 4+ myzh+ ¢p(myz + ma3) =0 (25)

i [aol + BoW - wJ £+ %% § - 2may Wh + mip (WE + Uh) + mys U = -iaom + & [f" - (a% +620)f] (26)

i [aoU + BoW ~ wl h + %¥ ¢ - 2myp UE + mp; (Uh + WE) + mpy W = —-iform + % [h" - (a%o0 +g2o0)h (27)

i[aoU + BoW - wJ¢ - 2my3 Uf - 2mp3 Wh = - 7' + % [¢" - (a%o0 + 620)¢] (28)
J

] =% -8
with oo b and Bo b2 (29)

It can be observed that the curvature effects have been neglected in the diffusion terms. This set of
equations was used by Malik and Poll /39/. The equations governing the stability of waves whose wavenumber
is tangent to X (B = 0) have been derived by Stuart /25/.

4.2 Reduction to a two—-dimensional problem

In most of the stability analysis in three-dimensional flows, the curvature terms are neglected. This means
that my», m2;, my3, and mz3 are set equal to zero, hy and hs being equal to 1. In these conditions, it
is possible to eliminate f, h and T in (25) - (28) and to obtain an equation for the amplitude function ¢ :

v _ 2 2 2 n 2 2,2 s - n 2 2 _ a’y dew 0

¢ @+ B "+ (a® + BY)%P = iR [(aU + BW =~ w) (B " - (@° + B)Y) (1352 + 3;19¢ 30

This equation can be considered as an extension of the Orr-Sommerfeld equation.

Studying (30) in the framework of the temporal theory, Stuart /25/ has shown that the problem of three-
dimensional stability reduces to a two-dimensional problem. To establish this important result, it is'suf-
ficient to introduce the following quantities :

a?Y = a? + B2 and tgy = B/a (€3]
where ¥ represents the angle formed by the direction of the wavenumber vector k and the X-direction.

Equation (30) then becomes :

IV . a2
¢~ = 207"+ a*Pp = iR [ (TP - w) (3" - aPp) - wﬁ—%] (32)

Uy = Ucosy + Wsiny represents the projection of the velocity in the Y—-direction. We have, therefore,
a two-dimensional equation (Orr-Sommerfeld equation) inthe direction of the wave number vector.

In spatial theory, the complex nature of o and B makes such a manipulation impossible, except if the
amplification and the wave number vectors have the same direction.

5 ~ CROSS-FLOW INSTABILITY

Stuart's result has a very important implication : relation (32) shows that, for studying the stability
of a temporal wave in a three-dimensional flow, we have to solve a two-dimensional stability problem in
each wave direction §. At each ¥, one can obtain a stability diagram relative to the mean velocity profile
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projected in this direction. The implications of this property will be discussed below for the infinite
swept wing and rotating disk flows.

5.1 Infinite swept wing

Let us consider at first the flow near the leading edge of a swept body with constant cross-section
and "infinite" span, see figure 14. ‘Y is the sweep angle. The freestream velocity Q, gives a component
normal to the leading edge U, and component parallel to the leading edge W,. Two coordinate systems are
defined : one, (X, Z, y) is linked to the wing, and the other (x, z, y) is linked to the external stream-
line. U and W designate the projections of the mean velocity along X and Z.

The infinite span assumption is expressed by an invariance of pressure and velocities according to the
Z direction, so that the boundary layer equations take the simple form :

U, AV _

4 + 5;' o] (33)
U v _ o dle . 07U

Uﬁ+va—y—Uegx—+ ——yz (34)
W W %W

Usgt Vg T Vit (35)

It can be observed that the first two equations are decoupled from the third and are the same as in
two—dimensional flows. At the boundary layer edge, U and W attain values Ue and We : Ue depends on the
chordwise position, but We is constant and equal to W, (equation (35)).

The projections of the mean velocity along x and z are denoted by u and w,which are called respecti-
vely the streamwise profile and the cross—flow profile. If 6o is the angle between the external stream-
line (x axis) and the direction normal to the leading edge (X axis), u and w can be expressed as :

u = Ucosfo + Wsinbo (36)
w = -Usinfo + Wcos fo

. _ —1 We
with 6o = tan Te 37

5.1.1 Leading edge region

Close to the leading edge, Ue and We are given by :
Ue = kX , We = Wy (38)

For X=0 , Ue=0 , 6o = 1 (the x axis coincides with the Z axis), U(y) = 0, so that, according
to equations (36) .

u=W and w=0 (39)

The line X = O is a particular streamline, along which there is no cross-flow, figure 34. It is called
the attachment line and will be considered further, paragraph 8.

For X> O, typical u and w profiles are sketched on figure 15. In the external flow, u is equal to the
total velocity u = (U3 + W3 )¥2 |, whereas w tends to zero. The laminar similarity solutions indicate
that the maximum value Iwmaxl of the cross-flow profile is proportional to X.

The stability problem will be studied in the (x, z, y) axis system. In this case, the angle { defined
in (31) represents the angle between the external streamline and any given wave number vector direction.
As it is wusual, we define € as : -

™
£ =5 - 40
2 v 0 external

We have now to characterize the stability streamline

(or instability) of the velocity profiles
projected in all directions from € = 0
(cross-flow profile) to € = 180°, These profiles will be denoted by UR and are of course combinations of
the cross-flow and streamwise profiles :

U = usin € + weos € (41)

Figure 16 shows typical projected profiles for values of € ranging from € = 0 (cross-flow profile)
to € = 90° (streamwise profile). Crosses indicate the location of the inflexion points ; the streamwise
profile looks like a classical two-dimensional boundary layer profile in negative pressure gradient and
for this reason its first derivative is monotonic ; on the other hand, the cross—flow profile exhibits
necessarily an inflexion point,and there is a range of low values of € for which an inflexion point is
also present. In particular, one canfind a valueof ¢, denoted as €1, for which the inflexion point is
located at the height where the mean velocity is equal to zero : this profile is called the critical pro-
file, '

Figure 17 presents schematic stability diagrams for € = 0, €7 and 90°. The Reynolds number R is
defined with the same reference variables for the three diagrams, for example R =[U x} 3,
7
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The streamwise profile is very stable : the critical Reynolds number is high and, as R tends to infinity,
there is no unstable frequencies (viscous instability). On the contrary, due to the presence of inflexion
points, the other two profiles are highly unstable : the critical Reynolds number is low, the amplification
factors are large and there is always a wide range of unstable waves at infinite Reynolds number (inflexio-
nal instability, see paragraph 2.2.3). The critical profile is even more unstable than the cross—flow one
and can amplify zero frequency waves, which correspond tostationary waves ; this last property is also

true for a narrow range of € around ey, say €V 2 to 6 degrees., For the other values of €, the statiomnary
waves are damped.

The theoretical results can explain some of the experimental features described in paragraph 3. If the
chord Reynolds number of a swept wing is large enough, cross-flow, or, more exactly, quasi-cross—flow
instability is able to induce transition near the leading edge, in a region of strong negative pressure
gradient. On the other hand, we expect that the streaks revealed by wall visualizations are the signature
of zero-frequency waves amplified by the profiles in the neighbourhood of the critical profile. These
points will be developed further in some length.

5.1.2 Downstream development

Consider now the downstream development of a laminar boundary layer on a typical airfoil whete the
external velocity reaches a maximum. As the equation of the external streamline is given by :

L (42)

this external streamline will change its curvature at the abscissa xy where U, is maximum (figure 18). From
the attachment line to xM the cross flow is directed towards the concave part of the external streamline ;
however, as xy is approached, the pressure gradient intensity decreases, leading to a decrease in the cross-
flow amplitude. The longitudinal pressure gradient then changes sign, and , somewhat downstream, the velocity
w close to the wall reverses (S-shaped profiles). If the positive pressure gradient is sufficiently intense,
the cross-flow profile can be completely reversed. In the same region, an inflexion point appears on the
streamwise profile and, in most of the cases, this inflexional, streamwise instability leads to tramsition
before the cross-flow instability begins to be significant again.

5.1.3 Falkner-Skan—Cooke profiles

This qualitive description explains the passage from the streamwise to the cross—-flow instability. In
order to study in a systematic manner the effects of three dimensionality on boundary layer stability, it
is possible to use the so-called "Falkner-Skan-Cooke" similarity profiles. The inviscid velocities normal
and parallel to the leading edge are given by :

U, = kx" sy We = Wo , where k, m and We are constants. (43)

By using the similarity variables :

- F&:_L Ue]“zy (44)

U — W —
7 W ) ETFM o g=cm
the boundary layer equations reduce to the ordinary differential equations :
T+ FF% B, 0 -F'® =0 (45)

C'"'"+FG =0 (46)

where By = . The leading edge flow corresponds to B, =1, m = 1.

m
m+ 1

The angle between the external streamline and the normal to the leading edge is fo = tanﬁlﬁgﬂ, so
that the streamwise and cross-flow profiles, made dimensionless with u., are expressed by :

%— = F' cos?Bo + G sinBo
€ (47)
w = = s
— = (G - F") cos B0 sin Bo
Ue

It is now possible to construct streamwise and cross—flow profiles depending on two parameters :
a pressure gradient parameter By, which is the same as in two-dimensional similarity solutioms, and a
"eross-flow" parameter 8o. Let us observe that the cross-flow velocity is maximum for Bo = 45°.

Figure 19 shows examples of cross-flow velocity profiles for 6o = 45° and some values of B}
(Mack, /8/). It is clear from equations (45) - (46), that for B, = 0, F' = G, so that u_is the Blasius
u
e

profile and w = 0. For By <0, the whole cross—flow profile changes sign. This means that the Fakner-Skan—
Cooke solutions cannot represent S-shaped profiles.

The stability of the Falkner-Skan-Cooke profiles was studied by Mack /8/ and Bieler /40/. An interes-
ting result is given in figure 20 : it presents the critical Reynolds number of the zero-frequency distur-
bances as a function of By, for 8o = 45° ; the critical Reynolds number of the two-dimensional Falkner-Skan
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profiles is also shown (8o = 0°). The Reynolds number is defined as :

[%]w L [ 8)

cosfo v

For sufficiently strong negative pressure gradients (By> 0.07), the steady quasi cross—flow disturbances
become unstable at Reynolds numbers well below the critical Reynolds number of the two-dimensional profiles.
In adverse pressure gradients, the contrary is true.

Figure 21 shows the portion of the Y~ F plane for which there is imstability, for two cases (from
Mack, /8/) :

Figure | B | 8o | R { H | (w/ug)max
20 a 1 45° 400 2.301 - 0.1191
20 b - 0,10f 45° 555 2.698 0.0349

Let us recall thatyis the angle between the external streamline and the wavenumber vector, and F
is a dimensionless frequency (F = 2mf v/u_2),.The dotted lines represent the loci of the maximum amplifi-
cation rates, the maximum maximorum being ‘demoted by the letter M.

In the strong negative pressure gradient (figure 2la, Bp = 1), the instability is cross-flow dominated.
The stationary waves are unstable in directions close to the cross—flow direction, but they are mot the
most unstable ones,

In a positive pressure gradient (figure 21b, B = ~0.1), unstable stationary waves are still observed,
and a wide range of unstable travelling waves extend around the streamwise direction. This is a typical
example of boundary layer with both cross-flow and streamwise instabilities.

5.2 Rotating disk

The exact solution of the Navier-Stokes equations for a rotating disk was first givem by von Karman
(1921) and later improved by Cochran (1934). Let us consider a flat disk which rotates about an axis per-
pendicular to its plane, with a constant angular velocity w, in a fluid at rest. The situation is depicted
in figure 22 taken from Schlichting /41/. It is natural to use a coordinate system (r, 6, y), where r is
the radius, 6 the azimuth angle and y is norma) to the disk. If the corresponding velocity components are
denoted as ur, ug, Uy, Von Karman's solution is obtained by setting :

u. = rwF(g) ug = TWG(g) , ug = H(L) 49

where [ = y/Uis a dimensionless distance from the wall, The functions F, G, H are tabulated in /41/. The
velocity field is sketched in figure 22. It is clear that the centrifugal forces give rise to a radial
velocity which is directed outwards. Equations ( 49) show that, at a given height above the wall, the axial
velocity uy is constant, whereas the radial and circumferential velocities are proportional to r.

In the coordinate system rotating with the disk, the azimuthal and radial velocity profiles, made
dimensionless with rw, are given by :

o : _ —_
I d W . =F
m=- 16 an o (50)

These profiles are plotted in figure 23. They look like the streamwise and cross—-flow profiles encountered
near the leading edge of a swept wing., The streamwise (azimuthal) profile has no inflexion point, so that it
cannot explain the breakdown into turbulence which occurs some distance from the disk axis ; this break-
down is caused by the highly unstable nature of the profiles close to the cross-flow (radial) direction.

Stuart /25/ analyzed the linear, inviscid stability of rotating disk flow. He noted that the critical
profile (u" = 0 at ¢ where u = 0) was located at an angle € = 13.2° from the radial direction, £ being
measured in the positive 6 direction. This corresponds approximately to the direction perpendicular to
the stationary vortices observed in the experiments of Gregory and Walker /25/, see figure 13. Brown /42/
extended Stuart's work to the viscous case, He demonstrated that, for € = 11.5°, stationary disturbances
are unstable, and that these disturbances consist of a system of vortices all rotating in the same sense.
The theoretical number of vortices was in fairly good agreement with experiments. However, Brown found a
critical Reynolds number much less thanthe observed value. In fact, as he used the Orr-Sommerfeld equation,
Coriolis force and streamline curvature were neglected. As it will be shown later, these parameters are of
first importance in the rotating disk problem.

6 — STATIONARY AND TRAVELLING WAVES ON A SWEPT BODY

6.1 Stationary waves

Both experiments and calculations have shown that zero frequency, stationary waves can be highly amplified
in three-dimensional flows. We describe below some additional experimental results obtained on swept bodies
and compare them with stability computations.

Stationary waves have been studied at ONERA/CERT on an ONERA D profile /23/ /30/. The angle of sweep
P and the normal angle of attack are equal to 40° and -8° respectively. The distribution of the external
velocity normal to the leading edge is plotted in figure 24 ; it can be seen that the flow is accelerated over
the entire profile.

For Qo = 81 m/s, figure 25 shows the variation of the mean streamwise velocity measured in the Z direc-
tion parallel to the leading edge, at a fixed altitude y = 0.09 mm, for various abscissas. The test
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conditions are the same as in figure 12, In laminar flow, the mean velocity exhibits a quite regular wavy
evolution in the spanwise direction ; the spanwise wavelength corresponds to the spacing of the streaks
revealed by the wall visualization shown in figure 12. In the transition region, the evolution becomes
completely chaotic. However, when the turbulent regime is entered, the velocity variations are damped. It
appears essentially that the laminar boundary layer is not uniform in the direction parallel to the lea-
ding edge. This leads to a wavy evolution of the skin friction coefficient, which produces alternate light
and dark bands (streaks) when sublimation techniques are applied.

In order to make more accurate measurements, the wind tunnel speed Q. was reduced to 48 m/s ; the
wavelength of the streaks then increases, as well as the laminar boundary layer thickness, and transition
moves back to XT/c = 0.85 (instead of X7/c = 0.30 with Q, = 81 m/s) Detailed results can be found in
/23/, /30/. Figure 26 shows the_ streamwise evolution of the waveleggth A~ measured in the direction
parallel to the leading edge. A" increases with x, but the ratio A"/§ remains practically constant and close
to 4. In fact, the increase in A" results from a decrease in the number of streaks : sublimations indicate
that certain streaks broaden and coalesce, while gther vanish. Stability computations can explain this
behaviour : the temporal amplification factor w;” of the stationary waves is plotted in figure 27 as a
function of g, at the station X/c = 0.69. The curve is parametrized by the wavelength A”. It is clear
that the stationary waves are unstable through a narrow range of € (1.4°<g< 3°, approximately) but that

the range of their wavelengths is quite large. Similar computations were carried out at other streamwise
locations, and the total amplification rate was computed for some selected wavelengths :the values of the
locally most amplified wavelengths agrees well with experimental data (figure 26).

Poll /24/, /31/ measured the characteristics of the streaks appearing on a swept cylinder. He found
that their direction was close, but not perfectly aligned, with the critical profile direction. Stability
calculations performed by Malik and Poll /39/ are in reasonable agreement with experiments : for the wave-
length of the stationary disturbances the discrepancy is less than 10 7, and for the wavenumber orientation,
the difference is of order 2°. A similar agreement was obtained by Bieler /40/ who compared his numerical
results with the experimental data of Bippes and Nitschke /43/.

Saric and Yeates /32/ made measurements on a flat plate having a swept leading edge ; the streamwise
pressure gradient was induced by an appropriate wall bump . With Y = 25° and Qy = 10 to 14 m/s, wall visua-
lizations show that the spacing of the streaks is approximately | cm ; linear stability theory indicates
that the most unstable stationary wave has a wavelength of about 1 cm. However, hot-wire measurements
indicate a dominating 0.5 cm structure away from the wall ; linear theory cannot explain this observation
and it is npecessary to use secondary instablility theory for explaining this superharmonic pattern /44/.

6.2 Travelling waves

Stationary waves constitute the most clearly visible manifestation of quasi cross-flow instability, out linea
theory predicts that travelling waves can also be highly amplified. This is illustrated on figure 28, which
presents numerical results obtained for the experimentalconditions of figure 26. The temporal amplifi-
cation rate is plotted as function of & for various fiequencies : there is a ;arge range of unstable fre-
quencies, the most unstable of which corresponds to £~ = 400 Hz (and not to f~ = O Hz). Are all these fre-
quencies present in the experiments ?

Profiles of the r m s velocity fluctuations measured at X/c = 0.40 and 0.60 are represented on figure
29 in the (y, Z) plane. As it can be expected, their spanwise evolution is not uniform. During a wavelength
two maxima are observed near the wall ; they are located in the regions where |3u/32| is large. At X/c = 0.60,
the fluctuation amplitude reaches 20 7 of the potential velocity, a value which is about twice that
which is measured is a classical turbulent boundary layer ! So large values have alréady been reported by
Poll /31/ in his experiments on a swept cylinder. Typical hot wire signals are also shown in figure 30.
At X/c = 0.40, the signal is quite regular, with a dominant frequency of about 70 Hz while the other theore-—
tically unstable waves are not detected. It is not easy to explain the origin of this preferred frequency
(secondary, resonant instability ?). At X/c = 0.60, the fluctuations are less regular, and small amplitude,
high frequency oscillations are superimposed on the large amplitude, low frequency oscillations. Poll /31/
found the same kind of hot wire signals, butat very different dimensionless frequency (influence of the
local pressure gradients ?).

If it is assumed that large amplitude travelling waves appear only as a secondary instability of the
primary, stationary waves, then one would like to know why the other linearly unstable mode are not excited.
As pointed out by Malik (private communication), a possible reason may be that disturbance sources (such as
wall roughness) favor the stationary mode,

7 — APPLICATION OF THE e" METHOD IN THREE-DIMENSIONAL FLOWS

In two-dimensional flows, the use of linear stability theory associated with an em breakdown criterion,
gives fairly good results ; the n factor can be related to the free-stream disturbances environment and
takes a value of about 9-10 when the external turbulence level is low. Whatever theory one considers for
solving the eigenvalue problem, four parameters are involved ; either (R,wy, Wj, ©) in the temporal theory
or (R, w, ar, ai) in the spatial theory. .

7.1 Calculation of the n factor

The extension of the e method to three-dimensional flows is not straightforward : we now have either
five real parameters in temporal theory(R, wps Wis os B) OF six in spatial theory (R, y, ar» ajs Br» Bi)-
Only two of them must bedstermined as eigenvalues, while the others are given.

The increase in the number of parameters explains Why three-dimensional problems are generally treated
with respect to the temporal theory. The total amplification rate 1n ﬂ for a given frequency y, is computed
Ao
by using a generalized Gaster's transformation :
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A 5 g
Ins = j —B 4s (51
so |Re (Vg) |

where Vg = (dw/dx, dw/dB, 0) is the group velocity vector and s is the arclength along the group velocity
direction, which is most of the time close to the external streamline direction. The n factor is then
defined as in two-dimensional flow,relation (9).

In fact, when R and W, are fixed, the value of wi is not unique, because wj = wj (y), where ¢ is the
wave number direction. Theso called envelope method seeks the direction ¢ for which w; is maximum ; this
maximum value is then integrated accordingto relation (51). This technique is the most widely used in
three-dimensional stability computations. In order to reduce computer time requirements, Srokowski and
Orszag /45/ simplify the problem by studying only the stationary waves.

Anotger solution is to use the fixed wavelength and frequency method : for given frequency and wave-
length X", the value of W; is integrated along the abscissa. The envelope curve is then obtained once
considered several wavelengths and frequencies. Srokowski-Orszag /45/ and Dagenhart /46/ employed this
technique for the zero-frequency waves, as well as Hefner-Bushnell /47/ for non zero-frequency waves.

In spatial theory, the problem is even more complicated, because of the appearance of an additional
parameter : the amplification rate is not a scalar anymore, but a vector A = (- oj, -Bi, 0). A simple
solution is to assume By = 0, Mack /48/. Alternatively, it is possible to use wave packet theory to remove
the arbitrariness in the definition of the total amplification rate ; Nayfeh /49/ has derived the propa-
pagation condition that da must be real. This approach was used by Cebeci and Stewartson /50/ for computing

the stability propertiesdgf the laminar flow on a rotating disk.

Malik and Orszag /51/ compared the results given by the envelope method and a (modified) wave packet
method. They demonstrated that "for a given case, the ultimate values of n are only very weakly dependent
upon the approach adopted". Although the wave packet theory is physically more relevant, it is more expen-
sive to use than the envelope method. On the other side, the fixed wavelength/ frequency approach leads
to n factors somewhat lower than those deduced from the envelope method /47/.

7.2 Calibration of the e® rule

Another problem is to see if experimental transitions occur ‘at nearly constantn, for several flow
conditions. Figure 31 shows numerical results obtained by Hefner and Bushnell /47/ who used the SALLY
code of Srokowski and Orszag /45/. The integrated cross—flow instability amplification ratios deduced
from the envelope method are presented for the experimental conditions of Burrows and Allen /26/, /27/,
and the symbols denote the (estimated) transition points. Although the ny factors vary from 7.6 to 11,
their values are not far from those currently computed in two-dimensional flows. An interesting result
is that the most amplified cross-flow instabilities occur at relatively high frequencies ; the statio-
nary waves are unstable, but are not the most unstable omes. A similar result was obtained by Coustols
(unpublished) for the experimental conditions of figures 25 to 28 : at the transition location, n is
equal to 7.4 for 500 Hz and to 4.4 for the stationary disturbances.

The COSAL code developed by Malik was tested by Malik and Poll /39/ for predicting transition on the
windward face of a long yawed cylinder, for which experimental data were available (Poll /24/) The enve-
lope method is also used, and the curvature terms are introduced in the stability equations (this is not
the case in the SALLY code, which solves the Orr-Sommerfeld equation according to Stuart's theorem which
neglects curvature terms). The integrated amplification rates of the most unstable frequencies are plotted
in figure 32 for two experimental cases. It can be seen that for the computations including curvature
effects, the n factors attransition are 11 or 12, However, when the curvature terms are omitted, the values
of np are found to be 17 or 18. This shows that the body curvature and streamline curvature terms produce
strong damping effects. On the other side, we observe that the cross-flow instability is dominated by non-
zero frequency waves.

The stabilizing influence of streamline curvature was also demonstrated for the rotating disk flow by
Malik, Wilkinson and Orszag /52/. In this case, the most unstable waves are stationary. Figure 33 shows
the integrated growth factors deduced from the Orr-Sommerfeld equation by Cebeci-Stewartson (wave packet
method, /50/) and by Malik et al (envelope method). Both calculations give ng factors greater tham 20.
But, when the effects of Coriolis force and streamline curvature are taken into account, the value of n
at transition is reduced to 11, and the amplification curve agrees well with experimental data. In parti-
cular, the critical Reynolds number is about 50 7 greater than that found by Brown and Cebeci-Stewartson.

These examples indicate that the Orr-Sommerfeld equation cannot provide accurate estimates of the
disturbances growth if the curvature effects and/ox the Coriolis -force are of importance. However, in
the scope of airfoil applications, these terms can be neglected provided transition occurs not too close
to the leading edge. It is encouraging to observe that the total amplification rates do not depend strongly
on the integration procedure, and that the use of appropriate equations leads to np factors lying in the
range 7-11, as in two~dimensional flows.

8 — ATTACHMENT LINE PROBLEMS

8.1 Laminar boundary layer characteristics

It has been said (paragraph 5.1.1) that the attachment line is a particular streamline, which divides
the flow into one branch following the upper surface of the body and another branch following the lower
surface, see figure 34. Let us consider the simplest case of a swept cylinder of constant radius r.



In the streamline coordinate system (x, z, y), X coincides with the attachment line, and the potential
veloc%ty reduces to U = Quwsinf¥. The boundary layer profile is obtained by setting m = 8, = | and

8 = - in the Falkner-Skan-Cooke solutions, relations (43) to (47) :

u_ L A F
ST M =0, s ) Fm
(52)
withn =y &¥ =[%EJX -0

In other words, the mean velocity profile is two-dimensional. But, in contrast with true two-dimensional
situationg its thickness is constant in the x direction, although the velocity v normal to the wall is not
equal to zero.

By integration of the G(n) profile, one can find :
&1 = 1.026 (v/K)® 011 = 0,404 (VKM H=8,/611 = 2,54

R8i1 = 0.404 Q_sin®f / (VK2 (53)

As it can be seen on figure 35, the attachment line velocity profile (H = 2.54) looks like the Blasius
profile (H = 2,59).

For a circular cylinder of radius r, k and B,, can be expressed as :

k=2 —Qwrc—"s“’ , and R9;; = 0.404 [%E M} (54)

The characteristic Reynolds number R = R6/0.404 was also used by many authors.

The preceding results are valid for an attachment line of infinite extent. In practical situation,
however, the attachment line has an origin (say, x = 0), but, for the sake of simplicity, we will assume
that the similarity solution described above applies as soon as x>0.

8.2 "Free" transition

The neutral curves of the attachment line profile and of the Blasius profile are compared on figure 36 ;
the former is somewhat more stable than the latter : its critical R8;1 is 260, instead of 201,

If there is no source of large disturbances at x = 0, we can guess that transition will be the result
of the amplification of internalized small fluctuations which are present, for instance, in the free-stream.
Pfenninger and Bacon /53/ made ot-wire. measurements along the attachment line of a 45° swept wing. They
observed the occurrence of regular, quasi sinusoidal oscillations in the form of modulated wave packets ; as
these wave packets are convected along the leading edge, their amplitude increase and turbulent spots (break-
down) eventually appear. Similar observations were reported by Poll/24/. In most of the cases, the waves are
detected for configurations such that R8;y is greater than 230, a value which is close to the critical R8p;
of the attachment line profile.

The theoretical calculation of the total amplification rate A/do of a given frequency is very simple : for
fixed values of Q. , ¥ and r, R4, is constant in the spanwise direction, so that A/Ao is expressed as :

Aldo = exp |-asx| - (55)

This means that, if we plot 1ln A a5 a function of x, we obtain straight lines parametrized with w,
and the n curve is reduced to the 1iné corresponding to the most unstable frequency (the frequency for which
-0 is maximum). By applying the em rule, the transition location xp is 3

xr = n/(-di)MAx (56)

Figure 37 (Poll /24/) presents the results of such computations for np = 6, 10, 14, together with
experimental data. For RO;1<230, transition never takes place on the attachment line. For higher values,
transition is observed and moves towards the attachment line origin as R13 is increased : 1in this case,
a part of the leading edge is laminar, another part is transitional, and a third part is turbulent !
Theoretical results with ny ~ 6 reflects fairly well this evolution.

8.3 Leading edge contamination

If the wing is in contact with a solid wall (fuselage, wind tunnel wall...), it has been observed that
turbulence appears on the attachment line for R8;,>100. Clearly, this observation cannot be explained in
terms of linear stability theory. In fact, the leading edge is contamined by the large turbulent structures
coming from the wall at which the model is fixed, without resorting to linear processes (bypass).

In order to examine this behaviour, Poll /24/ investigated the response of the attachment line boun-
dary layer to the presence of wires the axes of which were normal to
the leading edge direction. If the wire diameter, d, is made dimensionless
with the length scale ©) = (v/k), four d/f ranges are to be distinguished,
as it is illustrated in figure 38 :

wire

. For 0<d/R<0.7, the wire does not play any role, and transition is triggered by 'free' mechanisms
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as describe above.

. For 0.7<d/N<1.5, the wire begins to control transition ; the location of the first turbulent spots
moves closer to the wire when R8;,; is increased.

. For 1,5<d/fi<1.9, the flow is either fully laminar or fully intermittent behind the wire, depending on
the value of RO;;.

. For d/f>1.9, turbulent bursts always appear immediately behind the wire. But, if RO1: is lower than
100, they decay more on less rapidly and vanish as they are convected along the attachment line. If R8;,
is greater than 100, the turbulent bursts are self-sustaining : they grow, overlap aund turbulent contami-
nation process takes place. It is clear that there is a strong similarity with the leading edge contamina-
tion induced at the wing-fuselage junctjon.

9 - TRANSITION CRITERIA

The use of linear stability theory for predicting the transition onset leads to satisfactory results,
but involves time consuming and expensive calculations. For this reason,the development of simple cri-
teria presents an unquestionable practical interest.

Generally speaking, the use of such criteria is based on the following rule : it is assumed that the
turbulence will appear either by streamwise instability or by cross-flow instability, or else by leading
edge contamination. Criteria are applied for each one of these mechanisms, and it is assumed that the
boundary layer will cease to be laminar as soon as one of them is satisfied.

9.1 Leading edge contamination

Let us recall that the dominant parameter is the Reynolds number R8y:

3;‘” , with k =[———3§eJX
From experimental results, it appears that a complete leading edge contamination occurs when ROi)
is greater than 100 (paragraph 8.3).

ROy; = 0.404 67

=0

9.2 Streamwise criterion

As the properties of the streamwise profiles are close to those of two-dimensional profiles, it is often
assumed that two-dimensional criteria remain valid in three dimensional flows, provided they are applied
along an external streamline. For example, the criterion described in paragraph 2.3 will take the following
form :

RB1; - Rellcr = f (KZT’ Tu) ' (58)
ST, du
s T 1 82y, &
with Az, = o0———— [ o2t e dg
T 8p - Sez Sepv @8

where s designates the curvilinear abscissa measured along the external streamline.

9.3 Cross-flow criteria

The first attempt to explain the destabilizing effect of sweepback on laminar boundary layer is due
to Owen and Randall (1952, 1953, /54/, /55/), with an independant contribution by Squire (1952, /56/).
Owen and Randall related the cross—flow instability mechanism to a Reynolds number J( defined as :

¥ max|d
f o _JT.L. (59)

and propose a critical value X = 175 at the transition location. Later studies showed that this value was
too low, because the experiments from which the criterion was derived were biased by leading edge contami-
nation problems.

In 1973, Beasley /57/ developed a criterion which involved the cross-flow Reynolds number RS2. Calcula-
ting the value of this parameter at the transition onset for a certain number of experiments, Beasley
proposed (Réz)T = 150. However, it is cleat that the use of a single value of any cross—flow parameter
cannot give good results in all situations. For this reason, two more elaborate criteria, labelled C! and
C2, have been developed at ONERA/CERT /58/ /59/.

9.3.1 Cl Criterion

By computing the laminar boundary layer development for a rather great number of experimental cases,
it was found that the cross-flow transitions did not take place for a unique value de RS2. Various attempts
to correlate RSz, with characteristics of the cross—flow profile have not allowed to put together the expe-
rimental data. Better results have been obtained by associating the transition Reynolds number with a para-
meter linked with the streamwise velocity profile. Figure 39 shows a correlation between RGzT and the stream-—
wise shape factor, H, at the transition location. A mean curxve can be represented by :

300 [ 0.106___]

RSy, = =— tan™! (60)
T T 2,05
(l-lT - 2.3)
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The application of this formula is limited to shape factors less than 2.7, For greater values, the
transition phenomena are dominated by the streamwise instability, It can be observed that relation (60)
does not take into account the free-stream turbulence level Tu.

Let us notice that Poll /31/ gave a similar correlation, by using.}finstead of RS,.
9.3.2 C2 Criterion

The cross-flow correlation presented above is fully empirical. As it was done for the streamwise
criterion, we have tried to use the results of laminar instability theory to develop a more rigorous method
for predicting cross—-flow transitions.

This method is based on Stuart's theorem, already discussed in paragraph 4.2 : to study the stability
of pertubations in a given direction which makes an angle € with the cross-flow direction, it is sufficient
to consider the mean velocity profile Ue projected in that direction. For purposes of more convenient
analysis, Ue is normalized with Ue, = u, sin € (e # 0 and 180°%)

—=3—+Lcote (61)

By varying € from 0° to 90°, one moves continuously from the cross-flow profile to the streamwise pro-
file.

We then define for these profiles a displacement thickness 81€ and the corresponding Reynolds number
Ré1e ¢

s
818 = J (- —-) dy (62)
0

= EEQGQLE = gin € R§; + cos € RS2

R&1€

The next step is to describe the stability, or instability,of the Ue profiles. In this regard, the cri-
tical Reynolds number RS1€., is an essential parameter, Stability calculations have therefore been carried
out for a great number of typical Ue profiles computed in the conditions of Boltz, Kenyon and Allen expe-
riments /28/. The reader will find a tabulation of the results in /59/.

For 4 given experimental case, with given chord Reynolds number and abscissa, a function g(e) is defined
as :

g(€) = Ré1€.p/RE1E (63)
1f g(e) is greater than I, the profile Ue/Ue, under consideration will ke stable. If g () is less than 1,

it will be unstable. Let us observe that R81€ varies as the square root of Rc, whereas RS1€,. remains in-
variant. In other words, if g;(€) and gz2(e) correspond to Rcl and Rt2, we will have :

g1 . [Re2|¥
&L - [iETJ (66)

When the chord Reynolds number increases, g decreases
and the range of unstable directions widens.

Figure 40 shows the change in g in three abscissas relative
to the configuration P = 20° o = 0° of the Botz, Kenyon and

Allen experiments, for R, = 4.33 10°, The chord Reynolds number
Rc is defined as : &
Q ¢
Re =y Vv cos @ (2

where ¢ is the chord normal to the leading edge.

At the first abscissa, close to the attachment line, the curve g(e) is minimal for € close to 2 degrees,
but the streamwise flow remains very stable, At the last abscissa, X/C = 0.48, the curve g(g) has two
minimums, close to the cross-flow and streamwise directioms, the second being an absolute minimum : stream-
wise instability is preponderant here. Let us note that at the intermediate position X/C=0.35, the two types
of instability already coexist, with comparable levels. These curves show the passage from quasi-cross—flow
instability to streamwise instability.

The computation of the critical Reynolds number Rdlecr takes long, and therefore costly, calculations.
As a consequence, RS €., has been represented as a function of the height of the inflexion point and of
the first derivative of Ue taken at the inflexion p01nt (figure 41). If Ue does not exhibit some inflexion
point, the critical Reynolds number.is simply a function of some integral parameter, such as the shape
factor,

At a given abscissa, a laminar boundary layer calculation supplies the streamwise and cross-flow pro-
files, as well as the Reynolds numbers R&; and R§,. For each g, R§;e is obtained from relation (62) and
Ré1€oy 18 deduced from the previously described representations. This provides the plotting of the curve
g(e) and the determination of the direction emin for which g(e) is minimum in the neighbourhood of the cross-
flow direction. Such a calculation was carried out for available experiments on "infinite" swept wings.
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Figure 42 brings together the values of R§;e for € = emin, at the experimental transition points. As in
the case of the Cl criterion, it was decided to plot this quantity as a function of the streamwise shape
factor H. It is observed that the points collapse on different curves, a fact which seems to show the
influence of the free-stream turbulence level Tu. Although such a representation is both "daring" and dif-
ficult, this set of curves R 1&p(e = emin) = £(H, Tu) will be considered as a cross-flow criterion.

9.4 Examples of applications

9.4.1 Application to swept wings

At first the aforementioned criteria were applied todifferent experiments which were used to develop
them. For each case, the movement of transition is represented as a function of the chord Reynolds number
Re, defined in relation (65).

Figure 43 gives a comparison of the calculations with two experiments carried out by Boltz, Kenyon and
Allen /28/. The two cross—flow criteria give results that are very closed. The case ¥ = 20°, o = 0° clearly
shows the passage from streamwise instability (in positive pressure gradient) to cross-flow instability
(in negative pressure gradient). The value of Rc for which leading edge contamination occurs lies beyond
the range of experimental Reynolds numbers. For ¥ = 50°, a = 0°, there is practically no streamwise tran-
sition.

Detailed comparisons with other available data on "infinite" swept wings are given in Coustols /59/.

In figure 44, experimental and theoretical transition locations are compared in the case of a tapered
wing. The measurements were performed by Schmitt /60/ on the M6 wing ; the angle of sweep is 30° at the
leading edge and 15,8° at the trailing edge. Two calculations are presented for Qw = 90 m/s, & = =5° and -15°:
the first one uses the integral method developed by Cousteix and Aupoix /62/, in which the Cl criterion is
introduced. For o = -5°, streamwise and cross—flow instabilities are of equal importance, and the theore-
tical transitions lines are very semsitive to the numerical methods used. For a = ~15°, cross-flow insta-
bility dominates, and both methods give similar results.

9.4,2 Attachment line in "free" conditions

It is a typical case where transition is entirely governed by the streamwise instability, see paragraph
8.2, but the streamwise criterion is unable to predict it ; in fact, with Tu 2 0.1 1072 and Ry= 0, relation
(58) leads to ROp = 1100. In addition, the criterion indicates that all the attachment line becomes at once
turbulent from x = 0. All these results are in variance with available experiments, figure 36.

The shortcoming of the criterion (and of all criteria which involve boundary layer parameters) can be
explained as follows : the perturbations leading to transitim propagate and are amplified along the flow
direction, that is to say along a physical distance. Presently, the criterion involves R, a Reynolds num-
ber based on a characteristic boundary layer thickness ; in two dimensional flow, it gives good results,
because an implicit relation exists between R6 and the streamwise distance. This relation remiins more or
less verified along the external streamlines of a swept wing, but fails dramatically in more complex three-
dimensional configurations,where the streamlines are far from being parallel. In fact, it is necessary to
come back to the initial concept of waves propagation in the physical space.

9.4.3 Prolate spheroid

Experiments were carried out by Meier, Kreplin and Vollmers /38/ on a prolate spheroid at zero and non
zero angles of incidence. Figure 45 shows the external streamlines pattern for 0 = 10°, as computed by
Gleyzes and Cousteix /63/ from the measured wall pressure distributions.

Measured and computed transition lines are compared in figure 46. § is the circumferential angle ;
£ = 0 and 180° correspond to the lower and upper symmetfry lines, respectively (Gleyzes, Cousteix, Aupoix
/65/, Jelliti /61/). A reasonable agreement 1is observed for 45°<g<180° : both local and integral methods
indicate that transition is cross-flow dominated around £ = 90°, while streamwise instability is preponde-
rant towards the upper symmetry line. However, there is a strong discrepancy for 0<E<45° : the experiments
detected transition in this region, but the criteria were unableto predict it. In fact, the problem is
similar to that previously discussed : if we except the region close to the stagnation point, the lower
symmetry line looks like the attachment line of a cylinder with an angle of sweep @ _ T o
The laminar boundary layer calculations confirmed this point of view by showing that the characteristic thick-
nesses were nearly constant along the line £=0°, with a shape factor close to 2.5. The only way to improve the
agreement with experimentsis to solve the stability equations and to compute the n factor by integrating
the local amplification rates along the external streamlines. When this is done, tramsition is found to ocecur
in the region where criteria canmot detect it, (Jelliti, /61/). Cebeci /64/ used also the linear stabi-
lity theory and predicted some points of the transition line with a very good accuracy.

Meier et al gave estimates of the transition region extent by measuring the evolution of the wall
shear stress vector. These results were used for checking the intermittency method initially developed in
two-dimensional flow (paragraph 2.4). The extension of this method to three-dimensional flows is described
in /23/ : when the local boundary layer equations are solved, the Reynolds shear stresses -u'v' and —v'w'
are multiplied by the same intermittency function ; when the global boundary layer equations are solved,
three-dimensional integral parameters are weighted by y, in addition to the parameters already used in
two~dimensional flows. A comparison between numerical results and experimental data indicate that the both
methods give a correct estimate of the transition length, as it is illustrated in figure 47. In these cal-
culations, the transition onset is located at the experimental transition point. It is also clear that the
skin friction coefficient is well predicted in the turbulent zone.
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10 - DISCUSSION AND CONCLUSIONS

An important problem, which has not been discussed so far, is that of the interaction of cross—flow
vortices and Tollmien-Schlichting waves, when streamwise and crossflow instabilities are simultaneously
present. Let us recall that the fundamental assumption introduced into the practical calculation methods
(eM method or criteria) is that both kinds of instability are taken separately. However, Mueller et al
/66/ presented a nice smoke visualization on a spinning body, where Tollmieanchlichting waves were super—
imposed on cross—~flow vortices ; they concluded : "the nonlinear superposition of the two instability
modes raises interesting questions for the experts on nonlinear theory and for the computer predictors of

transition”.

On the theoretical point of view, the approach commonly used is to consider Tollmien-Schlichting wave
growth as a secondary instability in the presence of finite amplitude cross—flow vortices. The basic flow
is the three-dimensional boundary layer profile with a superimposed primary disturbance of known amplitude.
Two oblique, traveling waves are superimposed onto this basic flow. The problem is to find resonance con-
ditions, that is to say relations between waves numbers and frequencies which give rise to strong interactions
between primary and secondary disturbances., Reed /67/ used this technique for studying the effects of statio-
nary disturbances induced by the crossflow instability : in this case, the primary instability is made of vor-
tices rotating in the same sense. Reed showed that the interaction leads to magnified growth of the Tollmien-
Schlichting waves beyond that predicted by linear theory.

In a further study, Reed /44/ was able to explain the seeming inconsistency detected in the experiments
of Saric and Yeates /32/ : the streaks made visible at the wall by sublimation techniques were spaced by
1 cm, whereas hot-wire measurements indicated a wavelength of 0.5 cm. A theoretical analysis revealed a
strong interaction of the cross-flow/cross~flow type ; this interaction occurs with stationary distur-
bances of half the primary wavelength. The secondary vortices are easily detected by hot-wire measure-
ments,but as they are less intense near the wall as the primary ones, sublimation techniques cannot detect
them,

It is obvious that such complex phenomena are difficult to include in practical calculation methods.
When the e method is used, it is implicitely assumed that transition is driven by linear mechanisms. This
seems inconsistent with experimental data (paragraph 6 ) : fluctuations reaching 20 per cent of the external
velocity cannot be considered as small perturbations. On the other side, smoke visualizations performed by
Kegelman et al /36/ on anaxisymmetric body with spin suggest the presence of helicoidal disturbances travel-
ling along the cross—flow vortices just prior to the onset of turbulence (figure 48). It is tempting to
relate this helical instability with secondary instability mechanisms as described above. In addition, as
it is the case in two-dimensional flows, we can expect that different kinds of breakdown to turbulence
still exist in three~dimensional situations.

In spite of the great number of experimental features which are not taken into account in the eP method,
it is surprising to see that this technique gives fairly good results (provided the curvature effects are
properly introduced into the stability model). If one wants to use simpler methods, transition criteria
such as those described in paragraph 9 provide us with useful informations. Another feature must be pointed
out : when transition is dominated by cross-flow instability, the transition line is not rectilinear, but
presents a sawtooth shape, which makes the definition of the transition point an intricate matter : in our
experiments,uncertainties of 10 or 20 per cent of chord were currently observed, and the inaccuracies of
the theoretical methods are not much more important than those of the experimental data.

Another source of discrepancies between calculations and experiments lies in the influence of free-
stream turbulence level. In two-dimensional flows, a large amount of measurements made it possible to
introduce the effect of Tu into the theoretical models. In three-dimensional flows, the problem is not so
well documented, and one would like to have a larger number of systematic experiments (scanning in Tu) to
confirm, for example, our C2 cross-flow criterion.

As far as the transition region is concerned, we believe that simple methods, such as the intermit-
tency method, are able to give right predictions in very different situations., The inaccuracies of these
techniques are certainly small as compared with large errors which can arise in the prediction of the tran-
sition onset,
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Fig. 1 - Boundary layer development.
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Fig. 18 - Laminar boundary layer development on a

swept wing.
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Fig. 34 - Attachment line flow.
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Fig. 45 - Theoretical external streamlines /63/ on a prolate spherold, Experimental conditions
of Meler et al /38/, a = 10°, model length = 2.4 m, slenderness ratio 6:1.
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EVALUATION OF RESULTS OF BOUNDARY-LAYER CALCULATIONS
WITH REGARD TO DESIGN AERODYNAMICS

E.H. Hirschel
Messerschmitt-Bdlkow-~Blohm GmbH, LKE122
Postfach 801160
8000 Miinchen 80, FRG

SUMMARY

The tools for the preprocessing of geometrical and inviscid flow data for boundary-
layer computations, and for the postprocessing of the computed data are discussed. After
a presentation of some important basic properties of three-dimensional boundary layers,
the definition of coordinates, the computation of the metric properties, and transforma-
tion laws are given. Then the relations for the boundary-layer parameters, which are
used in engineering work, like the wall-shear stress, friction forces, skin-friction
lines, displacement properties etc., are presented. They are complemented with applica-
tions from design aerodynamics. The question what can be seen from boundary-layer results
with regard to separation is then addressed. Basic topographical considerations are
made, and basic topological rules are demonstrated. Finally practical separation indica-
tors which can be applied to boundary-layer results are listed. Applications from design
aerodynamics close the paper.
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1. INTRODUCTION

Boundary-layer computation methods are widely used today in industrial design aero-
dynamics. Of course, the concept of boundary-layer theory has its limitations., It is
applicable only where the boundary layer is attached. Separation including flow-off se-
paration at the rear end of a body cannot be described, and the total drag of a body can-
not be found in the frame of pure boundary-layer theory.

In the present paper an attempt is made to show the possible applications three-di-
mensional boundary-layer theory can find in design aerodynamics. The range of applica-
tions presented includes flow past wings, fuselages, car bodies etc. at all Mach-Numbers,
except for hypersonic cases. In hypersonic cases frequently viscous-shock layer methods
are used, which, however, are kind of higher-order boundary-layer methods.

Very important points in the application of boundary-layer theory are the preproces-
sing of the geometrical data and the outer boundary values (inviscid flowfield), and the
postprocessing of the results of the boundary-layer computation. In this paper the tools
for the pre- and postprocessing are developed and demonstrated with applications.

For the formulation of these tools contravariant vector components are used. Al-
though applied rather seldom in fluid mechanics they offer a very easy and elegant way of
handling all kind of mathematical operation and data in curvilinear and non-orthogonal
coordinates. However, in the frame of this paper only the application is shown, no deri-
vations and proofs are given. The reader is referred for instance to (1,2, 3].

Contravariant velocity components allow also a more compact formulation of the boun-
dary-layer equations [3]. Because these components arise in the transformation from the
Cartesian reference coordinate system in a natural way (Chapter 3.1), the equations can
be used without changes. On the other hand, the conversion from physical to contravariant
components and back is very simple and cheap. Therefore the advantages of using contrava-
riant vector components in pre- and postprocessing can and should be exploited, even if
the boundary-layer equations are used and solved in the classical formulation.

Separation of three~dimensional boundary layers is treated in this paper in the
sense that the solutions of these equations are investigated with regard to indications
of separation. No methods for the computation of separated flow are discussed in this pa-
per. For a view on viscous-inviscid interaction methods, inverse methods, and the solu-
tion of the Navier-Stokes equations in the frame of engineering applications see for in-
stance [4].

The present author develops in this respect the concept of zonal solutions for vis-
cous flow problems [5], where the Euler and the boundary-layer equations are coupled with
local solutions of the Navier-Stokes equations. This leads directly to an extension of
first-order boundary-layer theory to second-order theory because in many applications the
boundary layers become very thick compared to the smallest local radius of curvature of
the configuration under investigation. This concerns many experiments used for verifica-
tion, but also real scale applications, for instance fuselage base flow and the like. In
[6] to this end a higher-order boundary-layer code has been developed on the basis of the
concepts given in [3].

The present paper starts with a review of basic properties of three-dimensional
boundary layers (Chapter 2). Some of the pecularities in the development of these flows
are explained. The characteristic properties which govern the formulation of the computa-
tion method, the orientation of the coordinate system, and the position of the initial
data are discussed. '

In Chapter 3 coordinates and their metric properties are developed. The transforma-
tion laws allowing the handling of vector quantities are given. Then the boundary-layer
parameters which are of interest for the engineer are discussed. Relations for the calcu-
lation of friction forces, streamlines, skin-friction lines, displacement properties etc.
are derived, applications are given.

Chapter 4 finally is devoted to the problem of separation, its detection and to a
certain degree, its control., Basic topological rules and observations from applications
are presented. Separation indicators are formulated. Again applications are given in or-
der to show where and how the results can be used in engineering work.

In general no details are given about the computation methods used. Neither is the
turbulence modelling discussed, nor the, in many cases much more important problem of
stability and transition laminar-turbulent adressed. The reader is referred instead to
the literature.

2. SOME BASIC PROPERTIES OF THREE-DIMENSIONAL BOUNDARY LAYERS

In two-dimensional boundary layers any stream surface remains in its original form
as it moves along. In three-dimensional boundary layers any stream surface gets skewed.
This can be explained as a local centrifugal effect. In order to study this, the flow is
considered in an orthogonal coordinate system, where the t-direction lies along the in-
viscid external streamline, and the n-direction normal to it. Fig. 2.1a.

The inviscid external streamline is curved parallel to the t, n-plane. A centrifugal



force balance can be formulated as first approximation, Fig. 2.1b:

pelVel®  ape
(2.1) e T

Because the pressure is constant in direction normal to the wall

3.
{2.2) =0,

the pressure gradient 3p/3n acts throughout the boundary layer.

For every boundary-layer streamline a relation like (2.1) holds:

(2.3) QLi_ i) 33pe

an :
Because in the boundary layer |v|<|vel, o =0(pe), the curvature radius of every
streamline is smaller than that of the external streamline:
olyl?
2.4 r=rg ————s
( ) Oe|Ve|2
Of course, this relation does not hold in the very vicinity of the wall, because
there viscous forces cannot be neglected. The radius of curvature of the skln friction
line usually is finite.

From this result the following conclusions can be drawn:

- any boundary-layer streamline including the skin-friction line is curved in the same
sense but stronger than the inviscid external streamline,

- the skin-friction lines for instance from an oilflow picture don't have the same di-
rection as the external streamline if the boundary layer is three-dimensional,

~ any deceleration in main-flow direction, Fig. 2.1a, (point of inflexion appears in
the main-flow profile) leads to a strong deflection in cross-flow direction (three-
dimensional separation, wing trailing-edge flow).

The picture changes somewhat, if the external streamline exhibits a point of inflex-
ion, Fig. 2.2. Such a feature is always present on the suction side of swept wings. Imme-
diately behind the point of inflexion the cross-flow profile begins to swing to the other
side and complicated s-shape profiles can appear. After a short transition zone all
streamlines are curved again in the same manner, but opposite to the original one.

This behaviour of a three-dimensional boundary layer is important because all
streamlines including the skin-friction line are characteristics. In order to show this,
the boundary-layer equations for incompressible flow in Cartesian coordinates, Fig. 2.3a,
are considered: )

u Vv W _
(2.53.) 3X+—3—y-+ﬁ N

U, 8y u _ _13p
(2.5b) uax+vay waz T vaz s

By 8y ey _1op
(2.5¢c) uax+v3y +waz- >3y vaz

Following [8] characteristic manifolds ¢(x,y,z) are introduced, for instance like
B o_apd _, d
(2.6) = axarp'\pxﬂtp'
This leads after some manipulation to the characteristic form
Px Py 9z
(2.7) C = A-vmi 0 0 = wZ(A-va
0 a-ved 0

)2

with the abbrevi&tion
(2.8) A = uQy + VOy + wez .

Note that the pressure gradients do not enter the problem because the pressure field
is imposed on the boundary layer. Note further that the consideration of only the highest
derivatives in eqgs.(2.5) is not sufficient, because it is a system of partial different-
ial equations.

In order to prove that (2.8) represents the streamlines as characteristic manifolds
the total differential of ¢

(2.9) dtp=tpxdx+tpydy+tpzdz=0

is combined with the definition of three-dimensional streamlines:



to yield
(2.11) d¢=umx+v¢y+w¢Z=A=0

Thus it is shown that streamlines are characteristics, and that moreover a fivefold
characteristic in z-direction exists, which is in accordance with the five boundary con-
ditions in z-direction necessary to solve egs.(2.5), Fig. 2.3a.

The following conclusions can be drawn:

- the system of equations (2.5) is parabolic, this holds also for compressible flow
in non-orthogonal curvilinear coordinates,

- where the boundary-layer flow enters the computation domain, initial data must be
prescribed, no data are necessary where the flow leaves the computation domain (no
elliptic properties!),

- a solution procedure for the boundary-layer equations must follow the flow in the
sense, that the analytical domain of dependence (the streamline fan) of the flow
(for instance at P(x,y) in Fig. 2.3b) is enclosed by the numerical domain of depen=-
dence (for instance the quadratic difference molecule in Fig. 2.3b). This is the
Courant-Friedrichs-Lewy condition (see for instance [9]),

- the boundary-layer coordinate system must be oriented accordingly,

- negative cross-flow, a concept found in older literature is too limited, what
counts, is that the CFL-condition is fulfilled.

3. BOUNDARY~-LAYER PARAMETERS

3.1 Coordinates, Metric Properties, Transformations

In order to develop the tools necessary for the pre- and postprocessing a descrip-
tion of the most important geometrical properties of boundary-layer coordinates is gi-
ven. For details see [3].

In Fig. 3.1a and b a change of notation is indicated. Boundary-layer coordinates
are a special case of locally monoclinic surface-oriented coordinates. Consider the sur-
face element in Fiq. 3.1c, which is embedded in a Cartesian reference coordinate system,
the xi’-gystem (i'=1,2,3). The boundary-layer coordinates (xJ-system (j=1,2,3)) are
defined on the surface. The lines x2 = const. (xl-coordinates) and x1 = const. (x2-coordi-
nates) lie on the surface. The x3-coordinate is rectilinear and normal to both, and
therefore locally normal to the surface. Both x1 and x2, or x%, a=1,2-called Gaussian
parameters - have no length properties in general. Both parameters are not necessarily
counted along the coordinate lines.

The coordinate base indicated in Fig. 3.1c¢ is called covariant base. The covariant
base vectors belonging to the x®-coordinates are defined by (the Einstein summation con-
vention is used):

3! ] & 1
(3.1 3y = B &5’ =Bls1- +8§sz- +83§3- ,
where )
it ax’ A0
(3.2) By = axE (i'=1,2,3; a=1,2)

are the derivatives of the contour functions
(3.3) xi' = ki (xey
which define the x%-coordinates on the configuration under consideration.

The third base vector aj is a unit vector which points in x3-direction:

_21xax 9
(3.4) 33'@?‘{}'2—[' 321-1.

The components are
Jv Al

(3.5) By = -
with
R R
(3.6) a2 =) 63 -8l 8l
I L
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Once the components of the covariant base vectors are known, every geometrical as-
pect of the problem can be described. The difficulty lies in the definition of the con-
tour functions.

To demonstrate the necessary steps for the definition of the contour functions, a
percent-line coordinate system on a wing, Fig. 3.2 is considered.

Choosing the halfspan as normalizing length, Lyx2=s, Fig. 3.2a, rather than the
length of the individual xV = const.~lines yields

(3.7) x2' = x21,2 = x%s

2=0, and the tip of the wing at x2= 1, Fig. 3.2b.

so that the root lies at x
If the wing is defined as usual by airfoil sections x2= const., the normalizing
length Lx1(x2) on the upper and the lower side simply are the respective arc lengths from

the leading edge to the trailing edge, as indicated for the upper side of the wing in
Fig. 3.2a. If the airfoil sections are given pointwise, the normalizing length, for in-
stance for the upper side of the wing, can be computed with

Tmax . ' ' 1 1/2
.8)  LI,06P) - 1,"152 (0 () -x! o012 + 6 (0 -3

where i =1 denotes the point in the leading edge, and ipayx the point in the trailing edge
on the upper side of the wing.

By normalizing then the lengths from the leading edge to the individual points i
with Lx1u one finds the x1-parameter for each point i, with x1=0 in the leading edge,
and x'=1 in the trailing edge, Fig. 3.2.

The coordinates x'' and x3' for each point can then be presented as function of x1
by means for instance of a spline function {a smoothing spline like [10] is recommended):

(3.9) x2=const.: x1' =x! (x1), x3' =x3"(x1) .

Once the functions (3.9) are given as spline functions, the necessary discretization
either with ax!=const., or with varying Ax' can be made, however, for each cross section
X< =const. in the same manner.

Then spline functions are produced for the x1 = const. lines:
{3.10) xV=const.: x1' =x1"(x2), x3' =x3"(x2) ,

in order to find the necessary discretization in xz—direction, again either with ax2 =
const. or with varying ax2. This is necessary, if the number of cross sections which de-
fine the wing is different from the number of stations x2 to be used in the boundary-lay-
er calculation.

The whole procedure can be simplified by using a surface spline (bi-cubic spline),
but experience shows that a smoother representation of the geometry results with the pre-
sent parametric approach.

From relation‘(3.7) one gets two components of the covariant base vectors =
2' 2' _
(3.11) 81"03 32-5.

1 1 1 1
The other components B},BZ,B?,Bg result directly from the spline representations {3.9)

and {(3.10).

The components of the - symmetric - covariant metric tensor of the surface coordi-
nates

ay  a42
(3.12) (aae} =
az1 a2
are defined as follows:
" ] 1
8%+ (82)%+ (83)%

| 1 ) 1 1 1
(3.13b)  ayp =apyy = s} e; +oi 88l e,

(3.13a)  ayy

U 1 ]
(3.13c)  agy = (8))7+(83)2+ (83)% .
Note that the metric terms used in many boundary-layer computation methods are related to
the above by
hy g9 Jayf a
(3.14) - AR
g hp ajz Yazz
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The length element ds, the surface element dA and the volume element dV are defined
by (note that x3 has a length dimension [3]1):

(3.15) (ds)2 = a11(dx1)2+ 2 a12dx1 dx2 + azz(dxz)2 + (dx3)2 :
(3.16)  dA=vadxa?

with a the determinant of the metric tensor:

(3.17) a =aqqagy - (612)2 ;

(3.18) dv = va dx' dx2dx3 .

The angle ¥ between the coordinate lines x! = const. and x2'=const.. Figs. 3.1, 3.2

is found from the scalar product a; - a, = |a4l jazlcosd:
412
3.19 COSY = =,
( ) va1q vazg

Orthogonal coordinates with ajp =0 yield 3 = % as expected.

In Fig. 3.3 the metric properties of a forward swept wing are given [11]. Because in this
example the wing has no thickness, Lyl is always the chord length and the metric is the
same on the upper and the lower side,

The coordinates for a fuselage can be constructed in an analogous way. If the stag-
nation point lies close to the nose point (slender fuselage, small angle of attack)
cross-section coordinates can be employed, Fig. 3.4.

In this case the xl-parameter is counted along the axis:
(3.20) x1' = x1Lx1 =xlL

Because a fuselage usually is defined by cross sections, the normalizing lengths
Lx2(x1) are the circumferential lengths, and the spline representations first of

(3.21)  x'=const.: x2' =x2'(x2), x3'=x3'(x2)
and then

(3.22) x2=const.: x2 =x2'(x1), x3'=x3"(x1)
are constructed.

Fig. 3.5 shows the metric properties of the right half of a helicopter fuselage. The
coordinate system covers only the bulk fuselage up to x1=0.61 [11].

Because the inviscid flow usually is given with Cartesian components a transforma-
tion into the surface boundary-layer coordinates is necessary. As will be shown in Chap-
ter 3.2 on the other hand the skin-friction components have to be transformed back into
the Cartesian system in order to get the friction-drag coefficient.

In the following the transformation laws are given starting with the fundamental
transformation from the boundary-layer coordinates into the Cartesian coordinates. A vec-
tor F is defined in the covariant base aj by

(3.23)  F=Fla; = Flag+F2ay+F3ay .

Note that in the frame of first order boundary-layer theory only tangential compo-
nents of the external flow and the wall-shear stress are considered, hence only two com-
ponents are shown in Fig. 3.6a.

The components Fl are contravariant components which belong to the covariant base.
They are related to the physical components F*1l by
p*i
—,
Ya(i1)
because the base vectors are no unit vectors (the brackets around ii mean that no summa-
tion has to be made}.

(3.24) Fl = (i=1,2,3) ,

The fundamental transformation is from the xi-system into the Cartesian ref, system:

7 s . st s f
(3.25)  F1' - pl'F gl Fles) F2epd'F3, (e 1,2,9) L

The inverse transformation from the xJ'-system into the xi-system reads
]
(3.26)  FC=gSFY L, (w=1,2,3) .

The inverse transformation matrix {B§d, also called the Jacobian, is given in terms
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it
of the components B; of the base vectors:

1 1 1 2
810 By By (32 3- 82 33) (32 33 32 B3) (32 B3-32 83)
ko | g2 2 2 . . el g2
(3.27)  {Bju} = | B By By == | 8 33 31 8 )(B1 33 31 33 )(B1 33 By 83) |
3 3 3 . 2 1"
Bl: By B3 (31 32 B1 Bz) (B1 82 81 32) (B1 B, -31 32)

where Ya again is the square root of the determinant of the covariant metric tensor, eq.
(3.17) .

The two-dimensional form, for instance for x1',x3'-coordinates, is
[} ]
8 -8}
(3.28) (g} = = .
/E‘ 2I 1I
81 B4

As example the transformation of the external inviscid flow from the Cartesian into
the surface coordinates is considered:
(3.29) vy =8y v oL

Of course vg should be zero, but it should be computed in order to check the accura-
cy of both the 1nv1501d flow data, and the whole geometrical representation. The thSl—
cal components vi®, when needed, are

(3.30)  vE% = vd Yaqgyy . e

The amount of the velocity is
2
{3.31) vl = [{vapq Q) +2amv1v +(m22ﬂ)2 v

or with physical components

1
(3.32) Vel = [(v;1) + 2v*1 v;z cosd + (v*2)2 /2 .

The angle ye (for the definition of ¢ see Fig. 3.6b) reads

ﬁ?vg
(3.33)  tany,

u

a1 V; + a4 Vg

or
sind v;z
1

(3.34)  tanvye

x4 *2
va cos?d va

On the other hand the components v: or v;“ are found with

1 v;1 sin(9y-ve)
v o == 0} [ |Vel
e ar vaqysind -

(3.35) =' = .
%2 5
V2 -ff-/ =¥ o/ | o
e \ Yagy vazg sind

In closing this sub-chapter the problem of placing the initial data for the bounda-
ry-layer computation is addressed. It is closely related to the problem of coordinate
definition.

In general the rule holds that initial data placed into a region of strongly accele-
rated external flow very fast loose their influence on the solution in favour of the
local external conditions. The contrary is true if these data are placed into or close
to a portion of decelerated flow. In such cases the results of computations with approx-
imate initial data must be considered with care [12].

Consider now the flow past a wing, Fig. 3.7a to c¢. At the attachment line, which in
general does not lie on the leading edge at x1 =0, the flow is directed towards the wing
tip and not in chord direction. In many applications it is sufficient to start shortly
above or below the leading edge where the flow has changed sufficiently into chord di-
rection., Approximate initial conditions, locally froman infinite swept-wing solution (to
be found for instance in [13]), serve well in such cases.

However, if one is interested in the exact flow at the leading edge, for instance in
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order to study hydrodynamic stability (necessary for laminar wing design), a special
solution must be employed. In [14] as well as in [15], although with different approach-
es, the solution is marched from the root towards the tip in a small stripe, Fig. 3.7b.
The width Ax1LE must at least encompass the attachment line to such an extend, that all
the important features are captured. Note that the relative pressure maximum in chord
direction lies at a distance Ax'lp to the attachment line [3]. Only for an infinite swept
wing this distance is zero.

The computation in chord direction on the upper and the lower side of the. wing pro-
ceeds as indicated in Fig. 3.7b. In Fig. 3.7¢ the starting lines (inflow boundaries)
near the leading edge as used with the technique [14] are shown [16]. At the wing tip an
inflow boundary on the upper side of the wing can only be defined with a locailly infini-
te swept wing approximation [3].

In Fig. 3.7d finally the hybrid coordinates for a car body at Xaw are given [17].
The x2 = const.-lines are inviscid external streamlines, while the x! =const.-lines are
constructed by partitioning each external streamline in the same manner. In the forward
stagnation point a quasi one-dimensional solution [3] can be used to find the starting
data for the boundary-layer computation. In this way the whole nose region can be cover-
ed with the boundary-layer solution, which is of interest in many other cases, too.

3.2 Wall-Shear Stress and Friction Forces

The wall-shear stresses in general boundary-layer coordinates read

o
(3.36) 1;‘,"3=u%. (a=1,2),

and with contravariant components

Ve
(3.37) 193 =y 2
W ax3 *
where
3.
(3.38) %% =g .
Yo Ya(aa)

Magnitude |1.,| and angle yy between the %% = const.-coordinate line and Ty can be compu-
ted like the velocity data, egs.(3.31 to 3.35).

" The computed wall shear~stress distribution often is presented in iso~line plots.
Another possibility is to show it in carpet diagrammes (see for instance Fig. 4.10a).

In the following only the computation of the friction forces acting on a general
configuration is considered [18]. The friction forces on a surface element are with eq.
(3.16) ¢

(3.39) * dR® = r;3dA =8 A, (a=1,2).

The Cartesian components follow with eg. (3.25)

: id i Y]
(3.40) R =) dr* = 8] dR'+ g} dr? (it=1,2,3).

In Fig. 3.8 a surface element is given. By applying the above relations in finite
form to the surface element by choosing for instance

1 1 1
(3.41a) axy 4 = 0.5 (Axi-1,j + Axi”,j) ,

2 2 2
(3.41b) axy 4 = 0.5 (Axi,j-1 + Axi,j+1) s

and summarizing over the whole parameter plane the friction forces are found.

As an example results for a fighter nose at M. =2, Rep=1n=2.7 * 107 are given [19].
The inviscid flow was computed with the Euler code (20]. The turbulent boundary-layer
computation up to the position of the inlet, Fig. 3.9a, was made with the integral me-
thod [21]. The boundary-layer computation domain in axis direction extends over approxi-
mately 6m (0<xV=1).

In Fig. 3.9b the cumulated friction forces R1" and R3' are given for the whole con-
figuration. R is given for one half, only, because it is compensated by the force on
the other half. Note that the friction force R3' first is directed upward and then down-
ward. This reflects the direction of the skin-friction lines, Fig. 3.9a, which will be
discussed in the next sub-chapter, and in Chapter 3.5.

3.3 Streamlines and Skin-Friction Lines

One of the advantages of the use of contravariant vector components is that stream-
lines in non-orthogonal curvilinear coordinates are defined like in Cartesian coordi-
nates [3]:
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The construction of the streamlines for boundary-layer problems is made in the pa-
rameter plane, for instance with an iterative shooting technique 522]. Starting from Pp
a point PXi% is found on the next crossing point with either a x%=const. or a x!=
const.~coord.-line, Fig. 3.10. The angle yn is then corrected:w,‘ﬁ”: 1/2(9p + $a+1), until it
does not change any more. The last point PKI{ is then the new streamline point. All in-
terpolations are made linearly. Once the x®-coordinates of the streamline are known,
a back transformation into the physical space can be made with the contour-function rela-
tion (3.7), (3.9), and (3.10) for a wing, or (3.20) to (3.22) for a body.

In Fig. 3.11 inviscid externél streamlines with

1 2
(3.42) d—x1=diz ;
Ve Ve
and the skin-friction lines with
1 2
(3.43) dx _ dx©
L

are shown for a helicopter fuselage [19]. Instead of the contravariant components 133

also contravariant components c} of the skin-friction coefficient can be used, provided
they are computed with the same reference data.

The inviscid flowfield past the helicopter fuselage was computed with a panel me-
thod, and the boundary layer with the integral method [21]. Because a laminar separation
bubble occurs at the nose (see the o0il flow picture [23], Fig.3.11¢c), the boundary layer
was computed completely turbulent. The agreement between computed and visualized skin-
friction lines (oil flow picture, Fig. 3.11¢c) is very good, except for the vicinity of
the primary separation line. Although neither local nor global interaction (see Chapter
4.1) was taken into account,they lie quite close to each other, the computed separation
line a little bit downstream of the other.

The computed external streamlines and skin-friction lines on the fighter nose, Fig.
3.9a, appear to be plausible. Here only the direction of the external flowfield was
measured in three stations. The agreement with the computed directions is good.

In general it is strongly recommended to compute and plot at least the skin-fric-

tion lines. They give compared to a vector plot much more information. This will become
more evident in Chapter 4.

3.4 Heat Flux

The heat flux gy per unit surface at the wall is defined as in Cartesian coordi-
nates: ’

2

(3.44)  ay = -k3

Like for the other parameters iso-plots can be drawn, which is not demonstrated
here,

The heat flux through a surface element is simply

(3.45)  dQy = gy dA = gy 7@ dx1dx2 .

3.5 Displacement Thickness and Egquivalent Source Strength

The true three-dimensional displacement thickness &§q of a computed or measured
boundary layer can only be found by solving a linear partial differential equation of
first order. This holds even for some quasi two-dimensional cases like for instance the
plane-of-symmetry flow [3].

In [3] the original formulation of {24] for orthogonal coordinates was extended to
non-orthogonal curvilinear boundary-layer coordinates and contravariant velocity compo-
nents:

(3.46) [/ pevi (81 81,1)151 + [VF pev2 (87-81,2)11p = (/& 0o va),, -

Here [ ],, stands for 5[ 1/5x%. On the right-hand side a source term for possible
wall suction or blowing is included. The guantities 81y q denote the familiar two-dimen-
sional definitions:

i

(3.47a) 81,9

i

(3.470) 8y,



If from an integral-method solution the gquantities (in external streamline coordi-
nates, see Chapter 2)

8 v
Y
(3.48a) 6y, = (1-ﬁ)dx3 ,
[}
§ v
(3.48b) 6‘"=_I p"e\;‘e a3
[o]

are given, eq. (3.46) changes to

(3.49) [‘/Epe V;61]’1 & ['/E‘pe V§61],2‘ [T/{—:—‘-Tpe Ve A1X1]’1 = [_,:%‘Z‘Pe VeA1X2]’2 = (!/é‘po V(3))W
with
$ *1 *1 . )
_ ¢ PeVe -pv 3 _ sin(d - ve) ; cos(¥ - ¥a
(3.50a) Aq,4 = ] ba v e e I
o
8 *2 *2
_ ¢ PeVe ~oV 3_ Sinye COS Yg
(3.500) a2 - I Pe Ve “ Sme ot Se i
0

Other formulations are possible, too.

The external inviscid streamlines are the characteristics of eq. (3.46)} and (3.49).
These equations therefore can be solved in the boundary-layer coordinate system.

In Fig. 3.12 as example the computed boundary-layer thickness § and the displace-
ment thickness §q are given at three stations of the supersonic fighter nose, Fig., 3.9.
The distributions reflect the flow pattern seen in Fig. 3.9a. In Fig. 3.12b the thinning
of the boundary layer over the canopy 1s evident, as well as the accumulation of bounda-
ry-layer material at the lower part of the fuselage, Fig. 3.12¢c, due to the downward
flow direction at x> 0.5, Fig. 3.9a. Separation is not imminent. It is interesting to
note that the ratio boundary-layer thickness to displacement thickness is more or less
of the order of that of the 1/7-power turbulent boundary layer. The computed boundary-
layer thickness in cut D, Fig. 3.12¢, compares well with experimental data.

Finally the relation for the equivalent inviscid source distribution (Va o0 Vgﬁnv
is given for general boundary-layer coordinates [3]:

(3.51)  (V@po v3)

inv = [‘/E‘Pe V;51x1];1 + [.‘/E‘Pe V§51x2]:2 + (‘/glpo Vg)w B

and for integral-method results and external streamline coordinates:

g Ve b1y 1l + L

(3.52) (/E‘povg)in\l: AT igs

Se Ve A1x21s, + (Va'pg vg)w .

These ralations are solved locally. They are used regularly (trénspiration concept}),
where weak interactions are to be described (see for instance [5]).

4. BOUNDARY-LAYER SEPARATION

4.1 Basic Considerations

As was already mentioned it is not possible to describe the phenomenon of separa-
tion in terms of pure boundary-layer theory. However, many conclusions can be drawn from
a solution of the boundary-layer equations with regard to the location and to the confi-
guration of the separation region.

Compared to two-dimensional separation the situation is very complicated in three-
dimensional flows. Two-dimensional separation should be considered as a very special
case of separation, even if only steady flow is considered, as is done here. In Fig. 4.1
some prototypes of separating flow are given. In the two-dimensional case, Fig. 4.1a,
the wall-shear stress vanishes, which usually is taken as criterion for separation. The
angle X, under which the separation streamline leaves the surface was found in [25] to
be

(4.1) tan =—33(:,7T%§3—.

In three-dimensional flows only a few points exist on a surface where the wall-
shear stress actually is zero. In these singular points the skin-friction lines can form
nodal points, saddle points etc., Fig. 4.1b. The reader is referred with regard to these
topological properties, and to separation and vortex-flow topology in general to for in-
stance [25-33). Apart from the singular points vortex—sheet separation lines appear, Fig.
4.1c, whose structure, however, is closely connected to the structure of the flow at the



singular points.

The classical - two-dimensional - definition of separation must be extended, be-
cause in any case the formation of vortex sheets, which may roll up to vortices, Fig.
4.2, and of vortex filaments, which begin at focal points Fig. 4.1b, is coupled with the
whole flowfield structure. In [7] the following definition is tried:

"Separation is present, if locally the boundary-layer assumptions break down, if
vorticity is transported away from the body surface by convection, and subsequent-
ly vortex sheets and vortices are formed".

This definition encompasses two basic forms of separation [7]. The first one can be
called flow-off separation. It appears at acute corners, where the boundary layers simp-
ly flow off the surface, like at wing-trailing edges, Fig. 4.2a, 4.2b, or at highly
swept sharp wing leading edges, Fig. 4.2b. The second one can be called squeeze-off se-

aration, which is the separation form usually considered, and which appears at round
flanks, like round wing tips, Fig. 4.2a, or highly swept round wing leading edges, Fig.
4,2b, or at fuselages, Fig. 4.2c.

Squeeze~off separation in its simplest form appears on an ellipsoid at angle of at-
tack, where a vortex-sheet separation line forms in a situation which is termed open se-
paration in [26]. It can be explained by the curvature behaviour of the boundary layer
discussed in Chapter 2, Fig. 2.1. In Fig. 4.3a it is sketched how the two boundary-layer
streams from above and from below move against each other, starting at x1=0,4, Note the
curvature properties of the skin-friction lines. Note further that this picture appears
already on the base of an inviscid flowfield calculation without taking into account the
lee-side vortices which are fed by the open separation lines. Despite this the results
of the laminar boundary-layer solution are in rather good agreement with the experimen-
tal results [34] for this flow situation.

In Fig. 4.3b the development of the energy-loss thickness §3. and the displacement
thickness §1 reflects the convergence of the two boundary-layer streams against each
other. Boundary-layer material is accumulated at the body flank and the final squeeze-
off separation is clearly indicated.

This consideration can be applied, however, somewhat idealizing, to the flow situa-
tion on a rounded wing tip, Fig. 4.4. The boundary-layer flow moves from the lower side
of the wing around the tip to the upper side. Because of the curvature properties a con-
vergence of two boundary-layer streams like in Fig. 4.3a occurs. A tip vortex results
therefore, which lies on the upper side (suction side) of the wing. If the wing tip is
sharp, a flow-off separation will occur, Fig. 4.2a.

By means of boundary-layer considerations [7], flow-off separation at the trailing
edge of a lifting wing can be analyzed, Fig. 4.5. The boundary layers on the upper and
the lower side of the wing are sheared against each other, Fig. 4.5a. Downstream of the
trailing edge they form a vortex layer (wake), which is represented by the discontinuity
surface in potential theory models of lifting wings.

Departing from the bi-sector of the upper and the lower inviscid flow direction of
the wake, a kinematically inactive wake part (v*1(x3)—profile in Fig. 4.5c) can be iden-
tified, together with an active part (v*2(x3)—profile). The inactive part carries the
friction drag and the friction induced pressure drag like for a two-dimensional airfoil.
The active part carries the induced drag. At the trailing edge locally the shear of the
upper and the lower inviscid flows against each other, Fig. 4.5b, must be compatible
with the spanwise derivative of the circulation dr/dy [7,161]:

(4.2) -2|l/e£|sinwe£ = %.

Note that many first-order panel methods yield wrong velocity fields on the upper and
the lower side of the wing in this respect [7,16]. Even if the overall forces and mo-
ments are predicted correctly, the velocity fields can only be used for boundary-layer
studies if the condition (4.2) is fulfilled. In Fig. 3.7c the shear of the upper and
lower inviscid flows against each other, which increases in spanwise direction, accor-
ding to the increasing dr/dy, is clearly discernable.

In connection with the observation made with the boundary-layer development on the
ellipsoid, Fig. 4.3, finally the locality principle [7,16] is mentioned. Many exXperimen-
tal and numerical results of flowfield investigations suggest that a change in body
shape or in the flow configuration, for instance by separation, is felt only locally and
downstream of that location. This is the reason why in general a boundary-layer computa-
tion yields good results compared to experimental results, although usually only invis-
cid solutions without modelling of the separation phenomena are applied.

The fact that also the location of primary separation lines usually can be predic-
ted to a good degree of accuracy is connected with this principle. The global interac-
tion due to the separating boundary layer obviously is weak in most cases. The local in-
teraction, however, because of the elliptic properties of the flow near a separation
line or point, finally makes it impossible to predict exactly the location of separa-
ration.

The locality principle must be used with care. Of course, the flow is changed up-
stream too, because of the elliptic property of subsonic flowfields. These changes are
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small as was seen. They can be significant if for instance the wake of the body carries
kinematically active vorticity. Then a global interaction can occur which may not be
significant for the boundary-layer development, but for the global forces on the body.
An example for this 1is the induced drag of wings.

4.2 Basic Global Topology Rules

The number of singular points obeys topological rules. Here only two of these rules
will be demonstrated in order to show how such rules can be used. The reader is referred
to [27] for a thourough discussion of this topic.

Two classes of singular points exist, Fig.4.1b: a) nodal points N, which include
focal points F, b) saddle points S. Half-nodes and half-saddles are denoted N', and S',
respectively.

The first of the two rules concerns the connection of streamlines and skin-friction
lines in a two-dimensional plane cutting a three-dimensional body [27}:

(4.3) (2N+-;—2N-)-(25+1225')=-1 5

Two applications are shown in Fig. 4.6.

The body with the longitudinal cut, Fig.4.6a, exhibits the familiar attachment
point in the nose, which is a half-saddle. The separation region contains two recircula-
tion areas in the cutting plane, which are counted as focal points, Fig. 4.1b. Three
more half-saddles lie on the body surface and a free saddle point closes the recircula-
tion areas. Note that this is a real stagnation point, which lies away from the body
surface. It is seen that the near wake has an orderly structure, which, however, may not
exist as steady structure at every Reynolds number. The fluid in the recirculation area
is locked if the flow is steady.

Fig. 4.6b shows a different situation with real focal points, which represent the
longitudinal vortices on the lee-side of the wing. These vortices in turn induce secon-
dary suction peaks on the upper surface of the wing, and finally - secondary - vortex-
sheet separation which leads to secondary vortices. Even higher order vortices may ap-
pear. It is seen that three attachment lines with half saddles are necessary on the up-
per wing surface in order to complete the picture. In the lower part it is indicated
that a laminar boundary layer separates at a higher velocity level (note that the local
interaction due to the separation process is not indicated in the pressure distribution)
than a turbulent one. This leads to stronger vortices in the laminar case compared to
the turbulent case, because of the higher vorticity content [7].

The second rule concerns the connection of skin-friction lines on a three-dimensio-
nal body [27]:

(4.4) IN - £§ = 2
This rule will be demonstrated in Chapter 4.4, Fig. 4.12,

The topological structure, i.e. the topography of skin-friction lines and stream-
lines, can be very complicated. In Fig. 4.7 ([30] the vicinity of the nose of a blunt bo-
dy is shown with possible topographies, indicating that vortex filaments and vortex
sheets leave the surface (vortex filaments may attach, too, case 15), and arrange them-
selves above the body surface. It is very important to note that the same skin-friction
line topography on the surface does not necessarily mean the same vortex topography
above the surface, cases 2 and 3, cases 10 and 11. Therefore the interpretation of com-
puted skin-friction patterns or of oil-flow patterns on a body surface must be made with
great care.

Many of the patterns shown in Fig. 4.7 have been verified in experiment [35]. They
are partly very sensitive to changes in angle of attack, Reynolds number and Mach num—
ber. It appears, however, that with increasing Reynolds number a decrease of complexity
occurs (36].

4.3 Local Topography of Separation Lines, |r|-Minimum Line

In [37,3] the flow in the vicinity of vortex-sheet separation lines was studied by
means of local series expansions (see also [25,28]). One of the results was that very
close to a separation line a |1|-minimum line exists, Fig. 4.8. Consider a point Po on
the separation line, Fig. 4.8a. Locally a coordinate system is oriented such that x1 is
normal to the separation line, and x2 tangential to it. Schematically the wall-shear
stresses have a distribution like shown in Fig. 4.8b, with 13 =0 at Pol(x7=0), and 23
finite. A minimum of |1| occurs at

B
(4.5) AX = e
T IDZe D,

1 For details see [3753]. In two-dimensional flows and in plane-of-symmetry flows
AXp = 0, because there 142 =0, 11%# 0. In general three-dimensional cases, including the
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infinite swept wing case Ax% is finite. This means that the |z|-minimum line, which can
be observed in any experiment too, lies close, but not on the separation line. In three-
dimensional boundary-layer calculations the occurance of the |r|-minimum line can be
used as an indicator of a separation line. If locally eq.(4.5) is evaluated, especially
if other indicators of separation are present (see next sub-chapter), and

(4.6) Axé <« 1

holds, a separation line is imminent. In Fig. 4.8c the situation on a swept wing is
sketched, where iteratively the location of the separation line was approximated [37].

Usually the |z|-minimum line appears already much upstream of an open separation
line., If the separation line is curved, also a points-of-inflection line occurs ([37,3].

With the series expansion technique also the local topography of an attachment line
can be studied [3]. As was already mentioned in Chapter 3.1, the pressure-maximum line
lies close but not on the attachment line, Fig. 3.7b. Other details of the attachment
line ~ inviscid streamline and skin-friction line patterns - can be deduced, too [3].

4.4 Separation Indicators and their Application

The fact that on a three-dimensional separation line the wall-shear stress does not
vanish, Fig. 4.8, makes it difficult in principle to decide, if the computation process
breaks down, whether separation is found by the computation or not. The computation pro-
cess can break down if the CFL-condition, Chapter 2, is violated. This indeed occurs usu-
ally in the vicinity of separation. It can, however,also occur, if the coordinate system,
at least locally, is wrongly oriented.

Although the matter of three-dimensional separation in boundary=-layer computations
was studied by several authors (see for instance [38-41]), no simple single criterion
exists. For practical purposes the following indicators serve well to detect separation
in computed boundary-layer data:

1. local convergence of skin-friction lines (Fig. 4.3a),

2. bulging of the boundary-layer thickness (8), and the displacement-thickness (§7)
contours (Fig. 4.3b), .

t|-minimum line (Fig. 4.3a, Fig. 4.8c).

3. occurrence of a

Other indicators of more limited value are
4. wall-shear stress approaches zero, |1y|+Q (Fig. 4.10a),
5. sudden rise of streamwise form parameter Hi¢ = 51t/ 824y (Fig. 4.170b),
6. sudden rise of equivalent inviscid source strength.

In the following these indicators are applied to the results of boundary-layer com-
putations for a car body, and for an airplane fuselage.

In [42] (see also [12]) the flow past a research car body [43] was studied, Fig.4.9.
The length of the body is L =4.328m. The Reynolds number was Repef =9.74:10°%, and the
free~stream Mach number Myef = 0.1. The inviscid flowfield was computed with a panel me-
thod at zero yaw, but in the presence of the ground. The turbulent boundary layer was
computed with the integral method [21].

Because this car body has a good aerodynamic shape (cp= 0.16), the separation zone
is small, rFig. 4.9b. Wall shear-stress distribution, Fig. 4.10a, and streamwise form pa-
rameter, Fig. 4.10b, show apart from two peculiar regions (K3) nothing which points to
separation.

In Fig. 4.11a strong variations especially of the displacement thickness §1 are
seen. From the considerations in Chapter 4.1 it is known that a positive bulging (loca-
tion ¢ in Fig. 4.11a) points to squeeze-off separation, if it is accompanied by a con-
vergence of skin-friction lines (indicators 1 and 2). This is the case here: the conver-
gence of skin-friction linés at this location can be seen clearly in Fig. 4.12a. Conse-
quently a negative bulging, and especially a negative &1 (locations a, b, and 4 in Fig.
4.11a) points to a divergence of sgkin-~friction lines, Fig. 4.12a. This feature is indi-
cated in Fig. 4.3b for the flow past the ellipsoid, too. In Fig. 4.11b it is shown that
the bulging is a property of the real displacement thickness §¢1 only, and not of its
components §1ya, eq.{(3.47). Therefore in order to work with the separation indicator 2
eq. (3.46) has to be solved.

The point cf+ 0 in Fig. 4.10a is accompanied by a convergence of skin-~friction
lines, too, Fig. 4.12a, point K3. This feature is reflected in Fig. 4.10b, but not in
the thickness distributions, Fig. 4.11. It can be concluded that thils is a singular
point, a nodal point, especially because it lies in the - upper - line of symmetry.

Finally on the base of the computed results and with the help of the second topolo-
gical rule eq. (4.4) the possible surface separation topography shown in Fig. 4.12 emer-
ges. At the left and right flanks a short vortex-sheet separation line each is present.
In the back a pair of vortex filaments leaves the surface. Five nodal points, two focal
points, and five saddle points are distributed over the body surface. The nodal points K
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and Ky and also the saddle point Sq1 are evident from the computation, as well as the two
vortex—sheet separation lines. The other points are constructed. Experimental results
seem to confirm this pattern [12], which is also discussed in [31}.

The boundary-layer computations for the airplane fuselage [44] were made in order
to study means of passive boundary-layer control by geometry shaping. The computations
were made for a freestream Mach number Myef = 0.8, and a Reynolds number with respect to
the fuselage length of Re=7-10%, The angle of attack was a =0°. The inviscid flowfields
were found with panel computations, the turbulent boundary layers were computed with the
integral method ([21}.

In Fig. 4.13 the panel model is shown. The original configuration (M0) has circular
cross-sections all over. The modifications M1 and M2 were found by a smooth blending of
the cross-sections, starting at ' x'p =0.6 from the circular section, to a rounded triang-
le (M1), and a rounded circle/rectangle (M2) at x1 =1, respectively [44]. The center of
gravity of the modified cross-sections M1 and M2 lies always deeper than that of the
original cross-sections M0O. The side-view contour and the largest width of the fuselage
are the same for all three configurations.

In Fig. 4.14 the development of the inviscid flow and the boundary layer is shown.
A strong downwash and indications for a massive separation at x1~0.9 are evident for the
original fuselage, Fig. 4.14a. The down-shift of the center of gravity of the cross-sec-
tions reduces the downwash: the inviscid flow does not converge towards the lower symme-
try line at x' = 0.9, and the skin-friction lines don't get swept away from it , Figs.
4.14b and c, as for MO, Fig. 4.14a.

The distributions of the boundary-layer thickness § and the displacement thickness
67 at x1=0.76, Fig. 4.15areonlya little bit different for the three configurations.
At x1=0.89, however, it is seen that for M0 massive separation is present, whereas for
M1 and M2 a vortex-sheet separation is indicated, Fig. 4.16, see also Figs. 4.14b and c.

Taking together all clues, the computational results indicate a strong thickening of
the boundary layer below the upswept fuselage end and a massive separation for the ori-
ginal configuration M0, Fig. 4.17a. The modifications bring about a somewhat lesser
thickening, and especially a change of the structure of the separation region, as indi-
cated in Fig. 4.17b. This structure certainly is favourable and possibly will lead to a
smaller total drag of the configuration.

The results are subject to the following criticisms: a) The boundary-layer thick-
ness is of the order of the fuselage radius around the lower symmetry line at x1z20.9.
First-order boundary-layer theory certainly is inadequate here. The displacement of the
external inviscid flow must be taken into account, b) Neither the global nor the local
interaction was taken into account. The locality principle says that the global interac-
tion might play no large role, however, in order to make a statement about the drag
changes, the complete interaction must be taken into account.

The fact that neither the influence of the wing nor that of the tail unit was taken
into account, makes it clear that the basic reason for the adverse boundary-layer beha-
viour beneath an upswept fuselage end is the upsweep itself. Wing and tail unit, how-
ever, may modify to a certain extend the picture.

5. CONCLUSIONS

It was shown how results from boundary-layer computations can be post-processed,and
how they can be used in design aerodynamics. With the techniques available practically
every geometric configuration can be handled as long as only the boundary-layer concept
is valid.

In design aerodynamics boundary-layer studies are used for many purposes. Typical
applications are: airfoil and wing design, fuselage design, boundary-layer control by
cooling, heating, suction, blowing, boundary-layer stability and transition, separation
detection and control. New technologies like the laminar wing or hypersonic transport
systems demand the application of boundary-layer theory.

The problem of turbulence modeling seems not to be very critical, at least as long
as the boundary layers are pressure-field driven. Eddy viscosity models and the assumpt-
ion of turbulent isotropy usually are sufficient. The situation is different with regard
to hydrodynamic stability and transition laminar-turbulent. Empirical criteria exist on-
ly for two-dimensional and for swept-wing cases at low Mach numbers. The reason for this
unsatisfactory situation is that transition in three-dimensional boundary layers can oc-
cur by several highly complex mechanisms, which are not yet well explored.

Integral methods and finite-difference methods seem to give results of comparable
quality. Boundary-layer control as cooling, heating, suction, and blowing usually is
handled with finite-difference methods because of their higher flexibility. For most of
the problems of design aerodynamics first-order boundary-layer theory suffices. If the
Reynolds numbers are low and for instance at the end of fuselages, where a reverse Mang-
ler-effect occurs, second or higher-order boundary-layer theory should be employed.

Separation locations, at least the primary separation line, can be found in many
cases with sufficient accuracy, even if no global interaction is taken into account. In
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some cases even the separation topography can be deduced to a certain extend. There is,
of course, always the desire to treat separation in more detail, and also to compute
drag and lift of a configuration without the classical modeling approaches. In such ca-
ses the local and the global interactions must be taken into account.

The ultimate approach to this end is the uniform solution of the Navier-Stokes

equations, which, however, completely leads away from boundary-layer theory. For several
reasons, one of them the high costs of such solutions, other approaches are in use or in
development, like inverse methods, interaction schemes etc.. An approach, where bounda-
ry-layer theory will play a large role in future, too, is the concept of zonal solutions,
where the Navier-Stokes equations will be solved only where the boundary-layer concept
breaks down. Finally,boundary-layer theory will increasingly be used for unsteady prob-
lems of all kind.
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7. SYMBOLS

7.1

g

CFL
cp
Cf

ds, da, dv
Gl

F
F

Fi, pri

Htt

Aw
Re

Ri'
RG

s,s'

VrVn

Latin Letters

= ajgqazp-(aq2)? determinant of
covariant surface metric tensor

covariant base vector of surface-
tangential coordinate

covariant base vector of surface-
normal coordinate

component of covariant surface
metric tensor

Courant-Friedrichs-Lewy condition
drag coefficient

= |1w|/(0.500 (ve)?), wall-shear-
stress coefficient

length,
ment

surface, and volume ele-

unit vector of Cartesian refe-
rence coordinate system

focus point
vector

contravariant, and physical com-
ponent O0f vector

= §1¢/81tt, formparameter of
streamwise (t) boundary-layer
profile

heat-conductivity coefficient
length

normalizing length of x%-coordi-
nate

Mach number

" nodal point, and half-nodal point

surface-tangential coordinate
normal to external inviscid
streamline (cross-flow direction)

point

(static) pressure

heat flux

heat flux per unit surface area
Réynoldsnumber

=r*', cartesian shear-force comp.

contravariant shear-force compo-
nent in surface-tangential coor-
dinate

radius

saddle point, and half-saddle
point

(static) .
surface-tangential coordinate in

direction of external inviscid
streamline (streamwise direction)

temperature

Cartesian velocity components
velocity vector
= |v|, amount of velocity, speed

z v*)|, Cartesian components of
velocity

contravariant, and physical com-
ponent of velocity in surface-
tangential coordinate

H v*3,velocity component in sur-
face-normal coordinate

streamwise, and crossflow veloci=-

ty component

X ¥Yr 2

7.2

o

sl

it
83

k
By
r

Ay

ra3, gxal

P
‘er‘?yl‘Pz
¥

7.3

Cartesian coordinates
Cartesian reference coordinate

surface-tangential coordinate,
Gaussian surface parameter

surface normal locally monoclinic
coordinate

spanwise coordinate on wings

surface-normal coordinate

Greek Letters

angle of attack

= axl'/9x%, coordinate of surface-
tangential base vector

= 3x1'/3x3, coordinate of surface-
normal base vector

inverse of B?
circulation

integral thickness
boundary-layer thickness
displacement thickness
momentum-loss thickness
energy-loss thickness
integral thickness

angle between x2=const., and x! =
const.-coordinate line
separation angle
viscosity coefficient

= u/p, cinematic viscosity coeffi-
cent

wing coordinates

density

(wall) shear-stress vector

= |z|, amount of (wall) shear stress

contravariant, and physical compo-
nent of (wall) shear-stress vector

characteristic manifold
derivatives of ¢ in x,y, z2-direction

angle between x2=const.-coordinate
line (x'-coordinate) and velocity
or shear-stress vector

Indices

7.3.1 Upper and Lower Indices

i3k, ..

A BrYsoe

=1, 2,3; denotes general tensor
quantities, parameters, etc.

=1, 2; denotes surface-tangential
tensor gquantities, parameters, etc.

denotes surface-normal tensor guan-
tities, parameters, etc.

7.3.2 Upper Indices

quantity in Cartesian reference co-
ordinate system

physical quantity

7.3.3 Lower Indices

e
inv

external inviscid flow
inviscid flow



2 lower side of wing 7.3.4 Other Symbols

ESESrfto |1|-minimum . o freestream condition

n CECL g SO _ underbar, vector quantity

ref referen?e quantity lp quantity at point P

L Streamvisedicection - partial derivative: v%j= avizaxd
u upper side of wing q(xi) i =1{2,3: q==q(x1,x2,x3)

w,wall wall or surface
The Einstein summation convention is used
throughout, e.g.:

Bgl Vi' = B%.l vi's 5%1 V2'+ Bgl V3' .

{aa), (ii) no summation
(1), (¢) no summation

8. FIGURES

\z‘ view from above
[ g A
inviscid external n
§ streamline
a) ,f
A b) inviscid external
/' streamline
[
Vn(Z}-‘{'/ ~ ’/7‘
Y = /\/
= / boundary-1
cross-flow oundary-layer
{Profile] H'“:;.. %Vt{” streamline
e (main-flow profile)
skin-friction
line
Fig. 2.1 Schematic of three~dimensional boundary layer (71},

a) flow in external streamline coordinates,
b) local centrifugal consideration (for convenience in Cartesian
coordinates) ., ’

inviscid external
streamline

point of
a) / N inflexion
crossf?law
profile
Z main-flow
profile
y
X t
Fig.2.2 Streamline curvature of a three-dimensional boundary layer (schemati-

cally) [71,

a) negative for all streamlines,

b) positive in upper part, negative in lower part,
c) positive for all streamlines.



5-19

view from above

a) ‘ b)

z 4 skin-friction line N
~——b.1. streamlines characteristics , . :
: Yy Tr—analytical domain of dependence
external streamline Y numerical domain of dependence )of P
wall normal {ana]ytica1 domain of influence+)
rf . m—
v
Yo
. b P{x,y) _—]
skin=-friction 1ine
l_{ external streamline
finite-diff. molecule
P(x,y) S odata known
Tw edata to be computed
> (o] 2 ®; -
X X
Fig.2.3 Three-dimensional boundary layer,
a) characteristics (skewed stream surface),
b) analytical and numerical domain of dependence of flow at P(X,y).
Jvm
T
a)
z,1)
| SETRES
Xy
.
A
A & surface
X§=c0nst.’ element
b) x7=0 x!l=const.,
< <0
eq
x1<const, - 1,‘:
x2=c0qst. =1 x
4T
X'y
Fig. 3.1 Boundary-layer coordinates,
a) classical nomenclatures,
b) present nomenclature,
c) surface element.
x3 x24 D) tip
a) x2=‘| 1
X ___;T::\\\\ Tower side upper side
HED) s=Lx2 |
v X 0.5 i
x1=const, -1eading edge
x2=const. J'
k~trailing edge trailing edge -
_ A, g J } N |
Voo )(1 -1 -0.5 root 0 0.5 1 x‘]
Fig.3.2 Wing percent-line coordinate system,

a) surface coordinates,
b) parameter plane x%,



a) Veo
‘ leading edge siggad
tip ‘I'azg[m]
x2=1 20.00 4
x1=const.
xZ=const. _ 18.00
x2' ,x2
A trailing 12.00
x2=0 edge
4.00 4
roob”)
4.00
|
0.0 U 12
Lx2=s — 0"
xT"
§0.00 -+
a
1 b) 2
§.00 ay [m*]
[m] 40.00
4.00 +
20.00 +
3.00 4
0.0 =~
0.
2.00
=20.00 -
1.00 4 i
~40.00 o
0.0 T T T -
0012 . 0.5 1.0 x! -s0.00 -
Fig.3.3 Metric properties of wing coordinates [11],

a) planform,

b) to d) components of metric tensor.

x2f

upper symmetry line

Tower symmetry line

0.5
|- nose base
upper symmetry line
0 T T -
0 0.5 1 x!
Fig.3.4 Fuselage cross-section coordinate system,

a) surface coordinates,
b) parameter plane x%.
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a)
]
1
o
fazz (m)
1.50 - = "“r““ﬂglé::\\
.13 o f
. } x \
0.76 -
x1=const. 0.5 Tower symmetry line
x2=const 0:28 7} b i
¥ upper symmetry line
“‘. 0.0 ey - T pﬁ { T T T
Voo 00 0.5 0.8 «I
! b)
3.76 2
1341 ™ :
3.00 z.26 4
aqpln’]
2.25 Lan=
160 4 — 0.76
Tower symmetry line
0.76 : 0.0 -{]
0.25 upper symmetry line ' _9,54 upper symmetry line
0.0 t T T r 7 T 3
00 ' " 0.5 " 0.8 Xl

Fig.3.5 Metric properties of fuselage coordinates (right half) [11],
a) configuration,
b) to d) components of metric tensor.

3'A

view in -x3-d1rection

a)

surface
element
x1=const.,
x3=0

x1'

Fig. 3.6 a) Vector components to be transformed,
b) general components and angle ¢
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1.92
pressure slde
2 —_— outf]ow%
xe [m :
[m] ) inflow § boundary
1.60 -
1.28 4
0.96
? 0.64 - suction slde
—— inviscid exter-
x2' +1 upper side 0.32 1 i 2 na1. str?aml.me
' -1 lower side z 7_—7 -~ skin-frictien
leading 0 A7 A v line
e?ge 0 0.32 0.64 0.9 1.28 1.60 1.92 2.24
x'=0 5 1
x2=1 - (]
d) )_(2 =const.-lines = .
direction of upper-side computation inviscid external X'=const.
b) - i ; streamlines 2
upper side of wing $3 7___\ =const.
_— e = . . e S
0\ AN
r leading Edge\k(ﬂ:m L direction of {5'.:\\\\\‘}“\\%%}\\\}\]\}}\\\“\\\
e leading edge ""‘é\\\\‘ \\\“ ﬂ \
R TE A — Fo e computation "‘i\\‘ull“}mf""#{{{\\ i/
e —— — (_ hg “““\}\/,,g._-._ | X
"'A"l'r—’?‘ ——-=f-attachment il
: Xp 3 line 2
(2= lower side of wing pressure
ma X imum
const. direction of lower-side
x1=const. computation oo
Fig.3.7 Placement of initial data,
a) attachment line on a swept wing at angle of attack (schematically),
b) computational approach at the leading edge [14],
c) inflow and outflow boundaries on a wing [16],
(Kolbe wing, Mw =0.25, Re=18:10°%, a=28.2°)
d) hybrid coordinates for car body with freestream at yaw angle 8 [17].
; xl=const.
o2 . —inviscid external streamline :/'0 x2=const.
3¢ ---skin-friction line
x< (] -» experiment: direction/ = a,078
L of 1inviscid flow é ER —
ERH al ﬁ-— T T e, 1s
== e RN e = i T o A S
0.25 o N i mdetir] - TP g o ’————--f————- S
0 = = B - ) w0, 628
-0.25 ek T | P
By b
o R | inlet
| [ ' plane
cut A B C D
1.25 o
x1=0 x1=1-] Fig. 3.8 Surface element for
L T Y r T T T T T the computation of
2.0 0.% Loog 1.50 .00 L 108 3.9 .00 .50 3.80 5.30 II.M M N
V' m) friction forces.
2.0 0.5-10%R"
Ri'[N] b) | | ) ’/
0.5.10"-R* //-\\ i >
1.5 "y >
] w X// 102.r*(-0)
pd L
1.0 L
\J/ ,/ \
‘/;. -
0.5 L/ A !
PN
| 7 L Fig.3.9
£ Boundary-layer computation for a super-
Qe s 1 j0 sonic fighter nose [19] (Me=2, Repoqp=2.7-107)
01 02 03 04 Q5 06 07 N8 09,419 ,) side view with inviscid streamlines,
| L | ! | | | | J and skin-friction lines,
-0.5 s b) cumulated friction forces.
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(1,3+1) (i+1,3+1)
ax? o] Yot
mll o
A v
ot i tan yg
m $m ~J]
P 1
m|. vl
(1,3) : (i+1,3)
fp————— px! ————=

Fig.3.10 Schematic of iterative shooting technique [22]
x2 .
Tower symmetry line a)
- T .
——inviscid external streamline

-—-skin friction line

break-down of
solution (separation)

base

b)

-0.07

x220.5 ——inviscid external streamline
ERTE N ——-skin-friction line 1
- x =0 x'=1
T J T I T ¥ j T
0.0 0.14 0.18 0.42 0.58 0.70 0.84 0.98 t.ae .28 1.40 1.54 1.60
x1' m
, .
3 m Taminar )

separation bubble

1.40 Il.'54
x m

Boundary-layer computation for a helicopter fuselage [19]

(Mo =0.184, Re=6.6 - 10° (Lyef = 1.63m), a=-5°),

a) external streamlines and skin-friction lines in the x%-plane,
b) side view of true configuration,

c) oil-flow picture [23].
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0.8
fuselage |}

fuselage

c)

position of
| boundary-
|layer

diverter

—0.5m—=

S Lo.3 fuselage 0.7
axis axis axis
0.7} .
AT
J X
uj,f
05 .2
L
i +0.05
06.05 0.05 0.0570.05 r
1 5 | & 5§\ b
m L
g = (m] “ 1 {m] @® = experiment m \Jl [m]
0.1+0.1
Fig.3.12 Boundary-layer computation for a supersonic fighter nose [19]
(Mo =2, Rep=1pn=2.7+ 107),
a) to ¢) cross-sections A, B and D as indicated in Fig, 3.9a,
left side: boundary-layer thickness §,
right side: displacement thickness §1.
a)

J: Jacobian

b) Al Discriminqnt/
l v\?{?«?
X focus q
> - |2
s

7 /////7%/
1,0
W

x]’
~ separating

streaf
surface

separation line

Fig. 4.1 Separation patterns,

saddle g
a) two-dimensional flow,

b) singular points of three-dimensional separation [28],
¢) vortex-sheet separation line ([3].
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tip vortex

a)

sharp tip:
type a

round tip: "
type b

vortex layer

D)

vortex
feeding
layer

Fig.4.2

Schematic of vortex layers and vortices [7] at
a) wing with small leading-edge sweep,

b) wing with large leading-edge sweep,

c) fuselage

sharp LE: type a
round LE: type b

c)

vortex
feeding layer

type b
flow-off separation: type a vortex

squeeze-~off separation: type b

-inviscid external streamline

a) — — ——skin-friction line
ol s primary separation line
ol R S 1

1
nose

breakdown of
/ solution
7 | (separation)

by (B
T T = {m] |{[m]
1.0yl 0.001 L0.001

upper symmetry line

Fig.4.3 Schematic of squeeze-off separation [7],
a) inviscid streamlines, skin-friction lines, primary separation line,
| 7| -minimum line in the x®%plane of a 1:6 ellipsoid at a=5° angle of at-
tack, laminar flow [7, 18] (right half of ellipsoid),
b) eli.ergy—loss thickness 834, and displacement thickness &8¢ at stations
X

=const. of solution a) [18].

vw*
e {deal inviscid
streamline (model 4)

======skin-friction line
—.—.— separation line

leading edge

round
wing

tip upper side of

wing

Fig. 4.4 Schematic of squeeze-off
separation on a round wing
tip (idealized), which

leads to a tip vortex [7]. trailing edge



inviscid streamlines:
a) -Tower side
- upper side

upper inviscid
external flow

ve£ Tower inviscid
external flow

Fig.4.5 Schematic of the three-dimensional wake of a lifting wing in steady

sub-critical flow (71,
a) trailing edge detail,
b) inviscid flow just downstream of the trailing edge (view from above),

c) idealized wake structure downstream of a trailing edge.

)

of » . 4
Lo FELTEE D - PETL L o LI T TS i SIS TITT SIS o FES .. .. o
-rl:/l//////l’y/;f AT WII_‘?II%IIII”

Fig.4.6 Singular points in two-dimensional
planes cutting three-dimensional bodies
(schematically), '

a) fuselage-like body with longitudinal
cut,
b) delta wing with transversal cut [7]. Cp

vorticity
content

turbulent

laminar
N

N
squeeze~-off separation

Fig.4.7
The most important topographical

12) M L structures of skin-friction lines
Vgl and streamlines (symmetry plane)

on a blunt body [30], case 1: a=0°.
e (5
- )
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Local topography of vortex-sheet separation lines [3],
a) separation line and |1|-minimum line,

b) distributions of wall-shear stress,

c) application on a swept wing [37].
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Boundary-layer computation for a car body
{SCHLOER car),

panel model of body with schematic of
boundary~layer coordinates,

side view with external inviscid
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AN APPROACH TO PRACTICALbAERODYNAMIC CALCULATIONS*

Yy
Tuncer Cebeci
Douglas Aircraft Company
3855 Lakewood Boulevard
Long Beach, California 90846

SUMMARY

The emphasis of these lectures is on the numerical solution of three-dimensional
boundary-layer equations using forms of Keller's Box scheme and interaction with solu-
tions of inviscid-flow equations. Calculations are described for the flow over a circu-
lar cylinder started impulsively from rest and a prolate spheroid at angle of attack and
were obtained with prescribed free-stream velocity distribution; the results emphasize
the need for the Characteristic Box finite-difference scheme, which automatically satis-
fies the numerical stability criterion, in regions of flow where the w-velocity component
is negative. Corresponding calculations, this time with a novel interactive method, are
reported for the flow over the leading edge of a thin ellipse, over an oscillating air-
foil and around wings; the results confirm that the interactive procedure provides accu-
rate solutions, without numerical problems, in regions of flow separation.

1.0 INTRODUCTION

The design and development of aircraft configurations relies heavily on expensive
and time-consuming experimental programs involving the evaluation of a large number of
possible components, with a range of flow velocities and orientations and of power
installation effects. The present goal is to develop reliable, accurate and efficient
methods for computing aerodynamic flows over a wide variety of complex aircraft configu-
rations and thereby help to improve aircraft performance with designs of greater simplic-
ity and increased reliability.

It 1s generally accepted that all significant aspects of a fluid flow can be ade-
quately described by an appropriate solution of the Navier-Stokes equations. .Since their
solution for flows over complex configurations is rather difficult and expensive, empha-
sis has been placed on particular forms such as those appropriate to regions of inviscid
flow and boundary layers. In recent years, with the availability of supercomputers and
advances in numerical methods, attention has also been paid to the Reynolds-averaged
Navier-Stokes equations and various further-reduced forms including their so-called
parabolized forms and the thin-layer Navier-Stokes equations. Significant advances have
been made in this area by, for example, Shang and Scherr [1], who made the first attempt
- to numerically simulate the flowfield around a complete aircraft by solving the Navier-
Stokes equations. To demonstrate the feasibility of their approach they chose the hyper-
sonic research aircraft X24C-10D, for which a detailed experimental database exists.
Using a mesh system around 1/2 x 10° nodes, they performed impressive calculations at
an angle of attack of six degrees with a nominal Mach number of 5.95, and indicated the
areas whfre future research should concentrate to make this approach more efficient and
practical.

Even though the intermediate forms of the Navier-Stokes equations in the form of
inviscid-flow and boundary-layer equations have been popular for many years, completely
satisfactory solutions have not been obtained for general flows due to the lack of a
proper coupling procedure between inviscid and viscous flows. The main obstacle to this
approach has been associated with flow separation. When the boundary-layer equations are
solved for a prescribed pressure distribution, the solution breaks down at the point of
vanishing wall shear. However, the solution does not break down if the external flow
velocity is computed as part of the solution by, for example, prescribing a displacement
thickness: this is known as the inverse approach and allows the solution of the boundary-
layer equations with separation.

Very recently, my colleagues and I have made progress towards the general goal by
the development of novel techniques for the solution of inviscid- and viscous-flow equa-
tions and for the coupling of the solutions. The interactive boundary-layer approach is
very general and allows any inviscid flow method to be coupled with the boundary-layer
equations. For example, in its application to two-dimensional subsonic flows over air-
foils, it employs Halsey's inviscid procedure [2] based on the conformal mapping and
Fourier analysis techniques and computes the flow over the airfoil and its wake. Succes-
sive viscous sweeps are performed, after each of which the external inviscid solution is
recomputed, until a converged solution is obtained. The boundary-layer method involves
an inverse finite-difference scheme developed by Cebeci [3], uses an algebraic eddy-
viscosity formulation due to Cebeci and Smith [4] and is able to compute flows with large
regions of separation without numerical difficulties. In regions of reverse flow, it
uses the FLARE approximation [5] in which the streamwise convective term is set equal to
zero in the recirculating region.

The boundary-layer calculation is initiated on each surface of the airfoil by a
direct solution in which the boundary condition at the outer edge follows from matching
the viscous velocity with the latest computed inviscid surface-velocity distribution.
55 the calculation proceeds downstream, the boundary-layer algorithm is switched into an
inverse mode in which the viscous-edge velocity is computed as part of the solution and

*This work was performed under Contract F49620-84-C-0007 for the Air Force Office of
Scientific Research.
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is accomplished by applying an interaction procedure suggested by Veldman [6] and further
developed by Cebeci et al. [7-10]. An overrelaxation scheme is employed and has been
shown to improve considerably the rate of convergence when combined with the interactive
viscous calculation. When calculations are required for a range of angles of attack, the
solution for each successive angle employs the previous solution as an initial approxi-
mation and the converged solution for each angle requires less than 10 iterations,

The method for calculating the wake region has some novel features which allow
results to be obtained at high angles of attack with which a sudden jump can occur at the
trailing edge by the removal of the no-slip boundary condition on the airfoil surface.
A small step, with the size related to chord Reynolds number, is employed in the immedi-
ate vicinity of the trailing edge to avoid this jump. For wake calculations involving
reverse-flow regions, an additjonal iterative scheme, based on the homotopy continuation
method, is employed with the FLARE approximation. Studies by Cebeci et al. have shown
that the boundary-layer calculations would break down without this added feature, when a
significant trailing-edge separation region is present. To avoid this, the trailing-edge
velocity profile is modified to correspond to an attached flow profile which allows
boundary-layer calculations to be performed at the next downstream station; the upstream
profiles are gradually modified and the downstream profile is recomputed until-a solution
is obtained for the original separated velocity profile. This computational scheme is
employed at each wake station for which there is flow reversal.

In the past year, this interactive boundary-layer method has been further developed
to represent two-dimensional steady and two-dimensional time-dependent flows. It has
also been extended to three-dimensional flows by using a strip-theory as well as a quasi-
three-dimensional approximation to the boundary-layer equations. Currently, the finter-
active boundary-layer method is being extended to full three-dimensional flows.

The substance of these lectures is provided in the following four sections which
deal, in turn, with equations, coordinate systems and initial conditions, numerical solu-
tion procedures and results obtained by the application of the calculation method. The
emphasis of the following section is on three-dimensional boundary-layer equations and
their solutions, and reference is made to the inviscid-flow equations where appropriate.
The correct choice of a coordinate system is essential to the subject and, together with
the provision of initial conditions, is addressed in connection with wings. The turbu-
lence model, appropriate transformations and further comments on interaction are
included. Section 3 deals with numerical methods for the solution of boundary-layer
equations and considers separately flows without and with reversal, and with separation.
The applications of Sections 4 and 5 have been selected to demonstrate problems and solu-
tions associated with a hierarchy of problems which include some of direct relevance to
atrplane configurations. :

Some of the material of these sections is taken from referenced pub]fcations to
which the reader is directed for further information.

2.0 CONSERVATION EQUATIONS

2.1 Boundary-Layer Equations

Consider a flow over a three-dimensional body which is defined in the Cartesian
coordinate system X,y,Z by

F(X,y,2) = 0 (2.1)
A convenient coordinate system for three-dimensional boundary-layer equations for laminar

and turbulent flows is nonorthogonal and curvilinear as shown in Fig, 2.1. Here x and z
denote the coordinate system on the surface of the body, © represents the angle between

BODY SURFACE

Figure 2.1. Notation for nonorthogonal curvilinear coordinate system on the body
sugface. Note that x and z are not orthogonal to each other but y is to x
and z.
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the coordinate lines x and z, and y is the actual distance measured normal to the sur-
face. First-order boundary-layer theory assumes that the pressure is constant across the
shear layer and stress gradients in directions parallel to the surface are neg11g1b1e
compared with those normal to the surface. The resulting equations have been given, for
example, by Bradshaw et al. [11] and can be written in the following form for an
incompressible flow.

Continuity Equation

%7 (uh, sing) + 55 (wh, sing) + 5o (vhyh sine) =0 (2.2)
x-Momentum Equation
u du w o au du 2 2
HT X + F; 7tV 3y " cote K1u + csco sz + Klzuw
2
. _Cscg 3 coté cscd 3p , 9 au _ roT .
- - 3% + e, a2 * 3y (v v - UV ) (2.3)
z-Momentum Equation
u v W dw Iw 2 2
ﬁT > + ﬁ; 77 + v Y + csch K1u - cote sz + K2]uw
?
. €Ot csc® 3p _csc”™® 3p . 8 W g
" PRy ax ph, 3z + 2y (v y - VW ) (2.4)
y = 0: u, v, w = 0 (2.5a)
y = & u = ue(x,z), W = we(x,z) (2.5b)

Here hy and hp denote the surface metric coefficients and 8 denotes the angle
between the coordinate l1ines x and z and, as a result of first-order boundary-layer
theory, the metric coefficients are funct1ons of the surface coordinates x and z only.
They can be obtained from the relations between X,y,Z and x,y,z and are given by

- 2 - 2 5 2
h% ” (%%) + (%%) + (%%) (2.6a)
-2 - 2 - 2 ‘
2 _ (3% 3 3z
hy = (g;) + (3;) + (3;) (2.6b)
cose = L3X/3x)(3%/3z) + (a&'/?‘xr)‘(ai/az) + (37/3x)(082/32) (2.7)
172

The parameters Kj; and Kp are known as the geodesic curvatures of the curves z = constant
and x = constant, respectively, and are given by

ah
- 1
K-I = h_ﬁin_[ax (h2 cos8) - 7 (2.8a)
1 2 3h,
KZ = h—]—h—z—-gm [ﬁ (h-l COSG) - W] (2.8!))
The parameters Kyz and Kp1 are defined by
.1 128 138
Ki2 = 5o [- K - AT 3 * cose (K, + F—Zaz) ] (2.9a)
o] 138 138
Kp1 = <75 = Ky - H; s + cos8 (K; + P =) ] (2.9b)
and the magnitude of the velocity vector ug in the boundary layer is given by
u, = (u2 + w2 + 2uw cose)llz (2.10)

t

2.2 Coordinate System

The determination of a coordinate system depends on the choice of the (x,z) net on
the body surface. This choice is not completely arbitrary and should take advantage of
flow symmetry conditions which are needed to generate the initial conditions for the
boundary-layer calculations. Two distinct coordinate systems form the basis for most
three-dimensional boundary-layer calculations on general shapes. The streamline coord-
inate system is formed by the inviscid streamlines and their orthogonal trajectories on
the surface. As shown in Fig. 2.2, the projection of the freestream velocity vector on
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Figure 2.2, Streamline coordinate system.

- CONSTANT PERCENT SEMISPAN LINE

CONSTANT PERCENT CHORD LINE

Figure 2.3. Nonorthogonal coordinate system on a wing.

the surface is aligned with the surface coordinate x and the velocity component along the
z-axis, i1s zero at the edge of the boundary layer, and is referred to as the crossflow
velocity. A second coordinate system is the so-called body-oriented coordinate system,
which can be either orthogonal or nonorthogonal, although the Tatter is more natural for
complex geometries like wings and ship hulls, Figure 2.3 shows a nonorthogonal coord-
inate system on a typical transport wing.

Each coordinate system has advantages and disadvantages. The body-oriented system
has the advantage that it is independent of the angle of attack and easy to calculate
even if the body is not defined analytically. 1In addition, second order boundary-layer
effects such as transverse or longitudinal curvature, can be included easily in the equa-
tions with an orthogonal system but singularities in the geometric parameters hy, hp, Ky
and Ko may be introduced and can require elaborate transformations [12] to remove them,

The main advantage of the streamline coordinate system is that it can be constructed
for most flow conditions once the stagnation point has been calculated, and the geometric
parameters do not have the singularities of a body-oriented coordinate system. Its main
disadvantage is that it depends on the angle of incidence although this can be unimport-
ant when the inviscid flowfield is determined analytically. More will be said about the
computation of flows of this type in the lectures of Dr. Govindan.

2.3 Initial Conditions

The three-dimensional boundary-layer equations require initial conditions in the
{x,y)-plane at some z = z* and initial conditions in the (z,y)-plane at x = x*., In some
problems these conditions can be established with ease and in others they require addi-
tional effort. As an example, consider Fig. 2.4 in which the initial conditions in the
{z,y) plane correspond to line AB and can be obtained from the solutions of the so-called
attachment-Tine equations for which ug = 0. For most wing calculations, however, this
does not correspond to a line of constant x and approximations are required with ug
small but greater than zero.

The initial conditions in the (x,y)-plane that form the wing-fuselage junction are
more difficult to compute since, as discussed in [13], the viscous flow along the line
AC is not of the boundary-Tayer type and belongs to a class known as the boundary-region
type. Approximations must be made to specify initial conditions on that Tline.



Figure 2.4, Fuselage-wing configuration.

2.4 Turbulence Model

The boundary-layer equations discussed in Section 2.1 contain Reynolds stress terms
which have to be expressed in terms of known or obtainable quantities in order to reduce
the number of unknowns to the number of equations. This so-called closure problem can
be solved in several ways and the most common is to define an eddy viscosity, vg¢, in
the same form as the laminar viscosity.

The specification of v{ may be made in terms of algebraic equations or as a
combination of algebraic and differential equations and this has given rise to termin-
ology 1involving the number of differential equations as discussed, for example, in
[4,11,14]. The zero-equation approach is preferred here and relates two Reynolds shear
stress terms to the gradient of the mean velocity profiles by

UV’ o= vy %; . “WV ' = vy %; (2.11)

with two separate expressions to represent the eddy viscosity across the shear Tlayer.
In the so-called inner region of the boundary layer, v is defined by
2 sy 2. 1/2

= 121y tAil
vedy = Ul + Gy ] (2.12)
where
T 1/2
L = 0.4y[1 - exp(-y/a)], A=, uo= (T,
T P
2 2 1/2
- (U o 2uy 2w
Ty = W [(gy)w + (ay& + 2(3y) (ay)w cos6] (2.13)
In the outer region v¢ is defined by
(Ved = 0.0168 | [ fugq - upddy (2.14)

The extensive boundary-layer calculations of Cebeci and Smith [4], Cebeci and Meier
[15], Chang et al. [16] and Cebeci et al. [17] suggest that the Cebeci-Smith algebraic
specification of eddy viscosity is adequate for two-dimensional boundary-layer flows and
the more recent results of Cebeci and Chang [18] lead to a similar conclusion although
the experimental data upon which the conclusion is drawn for three-dimensional flows is
sparse, The conclusion is supported by the calculation costs quoted by Cebeci [19] which
show that, in a two-dimensional calculations, the zero-equation approach is three times
chzaqer than with two-equation models and ten times cheaper than with Reynolds-stress
models.

2,5 Transformed Equations

The boundary-layer equations can be solved in physical or transformed coordinates
and each has its advantages. In three-dimensional flows, computer storage and time are
particularly important and transformed coordinates are essential as well as convenient
because they allow large steps to be taken in the streamwise and circumferential direc-
tions. In addition, they reduce the growth in boundary-layer thickness with increasing
x and/or z and can be used to generate the initial conditions [20] in some problems.

There are several transformations that can be used and it is convenient to express
the independent variables of Eqs. (2.2) to (2.4) by
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u 1/2
)

X = X, z =2z, dn = (;ET dy (2.15)

Here ug is a reference velocity and sj denotes the arc length in the longitudinal
direction measured from the initial line x = x*. The dependent variables are transformed
by using a two-component velocity potential such that

= Y = 32 = - (v, 2%
uh2 =3y wh] =3y vh]h2 (ax + az) (2.16))
In addition, dimensionless ¢ and ¢ are defined by
2
Vo= (vuos])l/zhzf(x,z,n). ¢ = (VU°51)]/ hyg(x,z,n) (2.17)

With the transformations defined by Eqs. (2.15) to (2.17) and with the definition
of eddy viscosity, Eq. (2.11), the three-dimensional boundary-layer equations of Section
2.1 and their boundary conditions in a body-oriented coordinate system, can be written
in the following general form:

uy u [ ! of of
(bf")' + f' + m,(f )2 4 maf'g' + m5(g')2 tmg o= myflogs— 4 megt 5 (2.18)
1 1 2 2 = ' ag_‘ '———ag|
(bg")" + g% + myglg")™ + myyfigh +myg(F)7 4 myy = mgfh 55—+ Mg9' 57 (2.19]
8! = myf' +myg’ 4 oMy gyt Mg (2.20)
u W
) ) . _ - SO R v
n=0, f'=g'=06=0; n=n, f'-= a, " e g’ = u, " Ve (2.21)

Here the primes denote differentiation with respect to n and f'and g' denote dimen-

sionless velocities, u/uy and w/up, respectively. The parameters mj to my4 and b are
given by:

Vs,
B 1 ) : = = -
my e sThe 3% (Vs1 hz sing), m, = s1K] cote, mg s.IK]2
ST s .
m4 = Wa—z‘ (V S-I h-l s1n9), m5 = -S-IKZ csco
s 3 3 3u
I e 1 - e =2 - 2
Mg = FT Ug 55 + ﬁ; Wo 57_'+ s.|K2we csco + S1K12uewe - S1K1ue coté
51 51
my = HT s Mg = F; B Mg = 51K2 cote, My = 'SIKZI’ myg = -s]K] csce
s oW s W
1 — e 1 - e -2 J— —2
M4 Ty e ax R, Ve 3zt SiKylle €560 ¥ syKpplighe - syKpWe cOtO

Vv
_ + t
.b— (1 +\)t), v 5

o +

2.6 Interaction Problem

It is well known that the boundary-layer equations for two- or three-dimensional
flows are singular at separation when solved for a prescribed external velocity distri-
bution and not singular when the external velocity is computed as part of the solution
by, for example, prescribing a displacement thickness. The inverse approach to the lat-
ter case, allows the boundary-layer equations to be solved in the presence of separation.

For flows with separation, a special procedure is used to overcome the stability
problem associated with the negative u-velocity and is referred to as FLARE after the
originators, Reyhner and Flugge-Lotz [5]. This procedure neglects the 1longitudinal
convection terms u(du/3x), u(d3w/d3x) in the momentum equations (2.2) and (2.3) and is sat-
isfactory provided the region of separated flow is small. As the size of the recircula-
tion region increases, the FLARE approximation becomes less accurate and several proced-
ures have been suggested to allow the reinstatement of the neglected term. One success-
ful scheme which was devised and stated for two-dimensional flows is referred to as DUIT
[11,211] (Downstream, Upstream Iteration) and requires several sweeps through the
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recirculation region. Thus, FLARE can be used to compute an approximate solution within
the recirculation region and the wu(du/dx) term is progressively introduced in successive
sweeps until it is fully represented. An alternative approach is to make use of unsteady
boundary-layer equations in which solutions are obtained by the Mechul function method
as a function of time and to introduce the longitudinal convective term as time progres-
ses. This time-dependent approach was dinvestigated by Cebeci [22] and found to be
satisfactory.

In an interactive boundary-layer scheme, a 1ink between a displacement thickness and
external flow is provided, and two types of procedures have been developed for this pur-
pose for two-dimensional flows. In the first [23-27], the solutions of the boundary-
layer equations are computed initially for a prescribed external velocity to obtain an
estimate of the displacement thickness &§*(x) distribution, and then in an inverse mode
for a specified displacement-thickness distribution &*(x). If this initial calculation
encounters separation, &*(x) 1is extrapolated to the trailing edge. The subsequent
boundary-layer calculations are then performed in an inverse mode to compute the blowing
velocity needed in the inviscid flow method. In general, this procedure leads to two
external velocity distributions, uay(x) derived from the inverse boundary-layer solu-
tion and ugq(x) derived from the updated approximation to the inviscid velocity past
the body witL viscous effects. A relaxation formula in the form

u_ (x)

s ) = 600 T+ o (2 - D1, v=0, 1,2, .. (2.23)
efi

where w denotes a relaxation parameter, {s then introduced to define an updated dis-
placement thickness distribution and to obtain new solutions of the boundary-layer equa-
tions so that the interactive procedure between inviscid and viscous flow solutions can
be carried out until convergence.

The second approach [6]1, which is recommended on the grounds of generality and
physical basis, treats the external velocity ug(x) and the displacement thickness &*(x)
as unknown quantities. The boundary-layer equations are solved simultaneously in an
inverse mode and with successive sweeps over the body surface. For each sweep, the
external boundary condition 1is written as the sum of the inviscid velocity ul(x)
over the body, and a perturbation velocity Sue(x), that is,

- - 0
y = 8, ug lx) = ug(x) + Su,(x) (2.24)
with Suga(x) computed from the Hilbert integral given by

. (2.25)

X

X
a

and the interaction region confined between x5 and xp.

This second approach has been extended recently to three-dimensional incompressible
flows with small spanwise pressure gradients [28]. 1In this case the flow variations with
respect to z are neglected and the equations are reduced to a form which provides a bet-
ter approximation to Eqs. (2.2) to (2.4) than those based on the strip theory or infinite
swept-wing approximations. The resulting equations are referred to as quasi-three-
dimensional boundary-layer equations and are written as

37 (uh, sine) *%y (vhih, sing) = 0 C (2.26)
2
u_ du u _ 2 2 _ csc"0 9p 9 au —_—T
FT %tV 5 Kyu® cote + K,w" csco + Kj,uw = - _FTE— Xt o (v 5y - UV ) (2.27)
u_ dw ow 2 - 2 . Csce coté 3p . 3 AW _ =TT
HT x t Y 5y + K1u csch Kow™ cote + K21uw = 0P At 3y (v 5y " uw') (2.28)

) The relationship between displacement thickness and external velocity needed in the
interactive calculations was obtained by generalizing the formulation used for two-
dimensional flows. The irrotationality condition, which for an orthogonal system is

3 o ) o
i [hz(we + 8w ) = a2 hy(ug + su )] (2.29)

was used to provide a relationship between the two velocity components us and wg, and
shows that the choice of computing the perturbation velocities due to viscous effects is
not arbitrary. The assumption that Sup is a function of x alone requires that

and that
W= w (2.30)
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In this way the edge boundary conditions for a quasi-three-dimensional boundary-layer
flow with interaction are given by Eqs. (2.24) and (2.27).

2.7 Closure

The equations and procedures described in Sections 2.1 through 2.5 are general and
can be applied to the flow over aircraft components, including wings, fuselages and
empennages. The concept of the interactive procedure of Section 2.6 is also general but
its application has so far been restricted to two-dimensional and quasi-three-dimensional
flows such as those associated with airfoils, and with wings at small angles of attack,
as will be discussed in Section 5.0. It is clearly desirable that the formulation of
interactive procedures should be extended to include full three-dimensional flows. At
the same time, improved numerical procedures are required to solve the three-dimensional
boundary-layer equations, as discussed in the next section,

3.0 NUMERICAL METHODS

3.1 Features of the Boundary-Layer Equations

Before we describe the numerical methods which can be used to solve the three-
dimensional equations described in the previous section, it is helpful to review briefly
the general principles which must be satisfied if accurate solutions are to be obtained.
These follow from the realization that the momentum equations are diffusive in the direc-
tion normal to the body and wave-1ike in planes parallel to the body, the direction of
propagation being along the local stream direction. Since this direction varies across
the boundary layer, it is possible to identify zones of influence and dependence for any
point and to obtain solutions to the three-dimensional boundary-layer equations such that
they obey these zones. To explain this further, it is useful to consider the grid of
Fig. 3.1, in which the solutions are known at the points indicated by x and are required
at P. The wall and external streamlines have been drawn on the assumption that both u
and w velocity components are positive. The domain of dependence of point P is denoted
by the shaded area and its region of influence corresponds to the hatched area where the
solution is altered when a change occurs in the solution at the point P. The information
to point P comes from the domain of dependence. When the u velocity is positive across
the layer but the w velocity component is negative near the wall, the wall streamlines
cause the domains of dependence and region of influence to change, as shown in Fig. 3.2.
The wall streamlines, which were beneath the external streamlines move above the external
streamlines. The angle between these two streamlines widens further when both velocity
components of the wall streamlines become negative (Fig. 3.3) and information comes from

2

Iy

EXTERNAL
STREAMLINE

X KNOWN
O UNKNOWN

STREAMLINE

- x

Figure 3.1. Domains of dependence (shaded area) and regions of influence (hatched area)
of point P when both u and w in the boundary layer are positive.

z
Iy LIMITING X KNOWN
STREAMLINE O UNKNOWN

EXTERNAL
STREAMLINE

Figure 3.2. Domains of dependence (shaded area) and regions of influence (hatched area)
of point P when u is positive across the layer and w is negative near the
wall.
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LIMITING
<Y STREAMLINE

EXTERNAL
STREAMLINE

X KNOWN
O UNKNOWN

- X

Figure 3.3. Domains of dependence (shaded area) and region of influence (hatched area)
of point P when both u and w are negative.

a region, which is not relevant to P so that the extent of possible calculations is
restricted.

3.2 Flows Without Reversal

There are several numerical methods that can be used to solve the three-dimensional
boundary-layer equations discussed in the previous section including the popular finite-
difference methods of Crank-Nicolson [29] and Keller [30] which have been used exten-
sively for the solution of two-dimensional equations. Their solution for three-
dimensional flows with either method is somewhat routine, as described in several refer-
ences, see for example, Blottner {311 and Bradshaw et al. [11] when velocity components
u and w are both positive. When the circumferential velocity component contains regions
of flow reversal, however, the solution of three-dimensional boundary-layer equations is
not so straightforward and requires special procedures to avoid the numerical instabil-
ities which can result from reversal in w. This can be best achieved by the Character-
istic scheme developed by Cebeci and Stewartson [32] which is based on the solution of
governing equations along local streamlines, employs Keller's method, and is described
in Section 3.3 together with the zig-zag scheme.

One of the basic ideas of Keller's method is that Eqs. (2,18) and (2.19) are
expressed in the form of a first-order system before the finite-difference
approximations to them are written,. The vresulting difference approximations are
lengthy, and to illustrate the procedure, we shall consider the following reduced forms
of Eqs., (2.18) and (2.20),

1 ]
f“' + f"e = fl %{%_+ gl %_I__ (3.])
) '

and discuss their solution subject to the boundary conditions given by Eq. (2.21).

To express Eqs. (3.1) and (3.2) in the form of a first-order system, we represent
the derivatives of f and g with respect to n by new functions, e and s, and define n by

e' = n (3.4a)
and write Eqs. (3.1) and (3.2) as
1 o 3e Je
n'+ N8 = e g+ s s (3.4b)
_3e ., s
g' -me-ﬁ+az (3.4c)

Depending on the signs of the velocity components u and w, or e and s in terms of
new variables, the solution of the above system can be obtained by Keller's method by
using different variants of this method. When both u and w are positive,we can use the
Standard Box scheme, and when u is positive but w is not,we can use ejther the Zig-Zag
or Characteristic Box schemes as we shall discuss in some detail in Section 3.3. When u
is negative, then we need to reformulate the problem so that the above system is solved
in an inverse mode as we shall discuss in Section 3.4.

The solution of the system given by Eqs. (3.4) by the Standard Box, Zig-Zag Box or
Characteristic Box methods depends on the difference equations for Eq. (3.4b); the
remaining equations are unchanged. 1In the following paragraphs we first consider Egs.
(3.4a and c¢) and show how the difference equations are written. :
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Consider the net cube shown in Fig. 3.4 and denote the net points by
Xo = 0, Xj = Xj-1 * Kj i=1,2, ..., 1
zo =0, zg =2zg_y +rg k=1,2, ..., K (3.5)

ng = 0, T!j=nj-'|+hj j=1,2, ..., d

npy  LkD) ((L.¥)]
|
\ |
|
|
’ " h 1 "
(Pvl PR i ) (i k- rl)
«
munk__. ————— (k1)
h" //
/
-l- Sl Tk
/ ¥ .
GLeLID R Li) ol

f— 4 —
Figure 3.4, Notation for the net cube.

The difference approximations that are to represent Eq. {(3.4a) are obtained by averaging
about the midpoint (xj, zg, nj-1/2),

-1, i,k k i,k
z . ? - > = 246 3.6
hy (e e521) = n5ly/m (3.6)
where, for example,
i,k _ i,k
Nyl T 'I/IZ(n‘,j + nj 1) (3.7)

The difference approximations to Eq. (3.4c) are obtained by centering all quantities
except ® at the center of the cube (xj_3 {2, Zp-1/2s Nj- 1/2) by tak1ng the values of each
parameter, say q, at the four corners of the Box, that i

1-1/2,0k 1 1-1/2,k | 1-1/2,k) _ i,k i-1,k 1k, gi-1.k
Gz tz (9 tayn SR SCHARIRH LU R MR B E RIP
and 6 is centered by writing it as
; }55 Jk=1/2 _ 7 (93-1/2,k-1/2 " e;:}/Z,k-]/z) (3.8b)

The unknown parameters of Eqs. (3.8) correspond to qfsK and }-1/2,k-1/2 5o that,
when a solution of the system given by Eqs. (3.4) is obtained, e and s are computed at
(i,k,j) and & at (i-1/2,k-1/2,j). This modified centering procedure is necessary to
avoid oscillations due to the use of the continuity equation in the form given by Eq.
(2.20) rather than the use of the stream function [33].

In terms of this notation, the finite-difference approximations to Eq. (3.4c) can
be written in the following form:

-1 s I P e <
hj (ej - ej_1) - m(e)j_”2 =k (ei - ei_]) +ory (sk = Sk-1) (3.9)

where, for example,

. gi=1/2,k-1/2 < 21 i-1/2,k i-1/2,k-1
ej ej R ej 5 (ej + ej )
- _1 i,k-1/2 i,k-1/2 - _ 1 ,.1-1/2,k Jd-1/2,k
gy = 3 (ej + &5l ) Sy =7 (aj + S5 ) (3.10)
e (m)j-l/z,k-l/z

With the Standard Box scheme, the difference equations corresponding to Eq. (3.4b)
are formulated in the same way as has been described above. With the Zig-Zag or Charac~
teristic Box schemes, however, an alternative procedure is followed and is described in
the next section.

It should be noted that the computational problems associated with time-dependent
boundary layers are similar to those for three-dimensional steady boundary layers. To
illustrate this point further, let us consider a two-dimensional flow for which the con-
E;ggity and momentum equations can be written in the following form, as discussed 1in

»
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or as the reduced equation

" n _afl |3f'

f +f9--5_r—+fﬁ—

which is similar to Eq. (3.1). As a result, its solution for positive u can be obtained

easily by the Standard Box scheme described here and in detail in [13]. When there fis

backflow in the u-velocity profile, which is a situation roughly analogous to a three-

dimensional reverse crossflow problem, Eq. (3.11) can also be solved with either the Zig-
Zag or Characteristic Box schemes described below.

(3.11)

3.3 Flows with Reversal

When there is flow reversal, it is necessary to modify the Standard Box scheme of
the previous section in order to avoid the numerical instabilities resulting from inte-
gration opposed to the flow direction. A convenient procedure is to include the Zig-Zag
formulation of Krause et al. [34] which, in common with the often used Crank-Nicolson
method, is easy to employ, particularly since the orientation of the numerical mesh is
chosen a priori. This advantage has a corresponding and potentially dangerous drawback
in the presence of Targe reverse flows, either steady or unsteady, since the mesh ratio
must be related to the velocity field according to the Courant, Friedrichs, Lewy (CFL)
condition [35] if stability is to be achieved. For a fixed grid chosen a priori, this
condition may be violated as the flow velocities are determined in ever-increasing comp-
utational domains. Thus, a natural boundary limiting the domain in which stable compu-
tations can be made must also be determined a priori.

One way to avoid the above l1imitation is to allow the grid to be determined along
with the flow calculations. This requirement can be accomplished by using the Character-
istic scheme so that the grid spacings and orientation can be adjusted depending upon the
magnitude and direction of the velocity field in order to satisfy a condition like the
CFL condition. The scheme is, in a sense, intelligent in that it maximizes the domain
in which the computations can be carried out for both steady and unsteady flows. For
completeness we shall first describe the Zig-Zag Box scheme and then proceed with the
Characteristic Box scheme.

To solve Eqs. (3.1) and (3.2) by the Zig-Zag scheme, we follow the procedure of the
previous section and express them as a first-order system. In this case, however, it is
more convenient to write Eq. (3.1) as

wi u_. Iafl uiﬁ |3f' ua_Q
f + mff" = f > f % + g > f 5z
without the definition of 6 and consider it as
] 1
frroemeer =gt 3y g0 35 (3.12)
which is applicable to steady (3-D) flows, and to unsteady (2-D) flows provided we set
g' = ]tﬁnd associate the z-coordinate with 7. As a first-order system, Eq. (3.12) can
e written as
f' =e (3.13a)
e' =n (3.13b)
' _ Je Je

n' + mfn = e %t S 3% (3.13¢)

The main difference between the Standard and Zig-Zag Box schemes depends on the
dif:erence equations for Eq. (3.13c); the remaining two equations, Eqs. (3.13a,b), remain
unchanged.

To write the difference equations for Eq. (3.13c) centered at P (see Fig. 3.5), we
use quantities centered at P, .Q and R, where

P s h

(Xs Zq720 Myoay2)s ©2 (K5 3700 2 hyqyp)s RS (Guq s 2kys hy/2) (3014

Equation (3.13c¢c) is then written as

n'(p) + [mfal(P) = Aye(Q) 3% (Q)] + Aye(R) [32 (R)T + s(P) [22 (P)] (3.15)
where
Xe - X X = X,
A o=t i Ay = Ao T-1 (3.16)
Xis - X0 2 %K T XA

The Characteristic Box scheme is based on the solution of the governing equations
along the local streamlines. In this case, we prefer the form of the equations given by
Egs. (3.4) and by denoting the streamline direction with ¢ and the angle that it makes
with the x-axis (3-D steady) or <t-axis (2-D unsteady) by a, write Eq. (3.4b) as
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Fig. 3.5, Finite-difference molecule for the Zig-Zag Box.

_ L, 2e
n' + n8 =21 W (3.17)
where ’

A=/ 6?4 sl a = tan'1 (%) (3.18)

3

With the notation shown in Fig. 3.6, the difference approximations to Eq. (3.17) at
point B are

-1 -1
hs . hs ; 3 ;
j i,k i,k J i-1,8 i-1,8 1 i,k i-1,84,8
L AL IS L al S T g Iyl 21850
i,k 1-1,8%
: (el -e 35 )
| i,k i-1,% j-1/2 j-1/2
= (r;? + AT (3.19)
7 Yyl172 T A2 5172
where the relation between e? and e}']/z’k']/z is
63'1/2’k']/2 e1'-1/2,k-3/2 ] e
B = - j i' /23 =
8y = 7 T (zg - zyp_q,9) + 05 (3.20)
z(k)
P ol
r4 T
k+1 {{E\Aw 7 fk
2z ?& Va N
k A %4
L
X KNOWN
2y & © UNKNOWN
[ ]
22
o X(i)
X1 X

Figure 3.6. Notation for the Characteristic scheme.

The boundary conditions for the velocity field follow from Eqs. (2.21) and can be
written as

8y = Sy = 6, = 03 ey = U, S5 = Vg (3.21)

The algebraic system given by Eqs. (3.6), (3.9) and two equations that result from
Eqs. (2.18) and (2.19), similar in principle to Eq. (3.17), together with the boundary
conditions given by Eq. (3.21) is nonlinear. Linearization is achieved with Newton's
method and the equations are then solved by the block-elimination method described, for
example, in [11].

3.4 Flows With Separation

For flows with separation, it is necessary to use an inverse method and compute the
external velocity as part of the solution. To discuss this point further, let us con-
sider a two-dimensional {incompressible laminar flow. It can be shown that, with the
transformation

n = /u07v7 v, b o= /I VX f(x,n) (3.22)
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the continuity and momentum equations and their boundary conditions can be written as
[10]

du

'

U4 _;_ FFY 4+ xue aT?_ = x(f' %;— - f" g—::—) (3.23)

n =0, f=f =0 (3.24a)
= 'z

n =g, f ue (3.24b)

There are several procedures which can be used to solve the above equations in
inverse form. In the Mechul function approach used by Cebeci and associates, Eqs. (3.23)
and (3.24) are expressed as a first-order system in a form similar to that given by Egs.
(3.13). Since ug is unknown and is independent of n, a fourth equation is obtained
by differentiating ug{(x) with respect to n, that is,

ug = 0 (3.25)
and adding a fourth boundary condition given by Egs. (2.24) and (2.25).

Straightforward application of the Box scheme to the four first-order equations
leads to the algebraic finite-difference expressions. The solution of Eq. (2.25) is less
straightforward and is discussed in [10]. It requires that a discrete approximation be
introduced to Eqs. (2.24), (2.25) so that the resulting expression can be written as

/ VX =
Ug = €44 U; (neue - f= g, (3.26)

where 'ci- is a matrix of interaction coefficients defining the relationship between
the disp%acement thickness and the external velocity. The parameter g; represents
terms whose values are assumed to be known and given by

il
= n¥ Ky o K
g9 = ug + j§1 c”(D‘1 - Dj) ¢4 405 (3.27)
where
D = /vx?uo (neue - fé) (3.28)

The solutions of the three-dimensional boundary-layer equations by an inverse method
with the Mechul function formulation follows a procedure similar to that discussed for
two-dimensional flows although there is much less experience of its use. It requires
that the two external velocities are treated as unknowns and, since they are independent
of n,

L]
Ue

n
o

(3.29a)

0 ' (3.29b)

1
We

represent the two additional equations needed in the solution of three-dimensional flow
equations., These equations and two additional boundary conditions obtained from rela-
tionships between the displacement thicknesses and external velocities constitute a sol-
uble set. The finite-difference approximations again make use of the Standard Box or
Characteristic Box scheme depending on the complexity of the problem.

3.5 Closure

The previous sections identified the role of three variations of Keller's Box scheme
which have been used in the solution of two- and three-dimensional boundary-layer equa-
tions., The Standard Box is used in regions of flow where the u and w velocity components
are positive and the Characteristic Box where the u component is positive and the w com-
ponent negative. The Zig-Zag Box offers few advantages and, since it does not auto-
matically satisfy the required stability criterion, should not be used.

4.0 APPLICATIONS: STANDARD PROBLEM

In this section we shall discuss applications of the numerical procedures described
in the previous section to problems in which we seek solutions of the boundary-layer
equations for a prescribed pressure distribution. We shall refer to this as the standard
problem and postpone the discussion of the application of the numerical procedufes used
in the interaction problem to Section 5.0. In Section 4.1 we will consider a two-
dimensional unsteady flow and discuss the calculation of boundary layers with consider-
able backflow. We shall examine both Zig-Zag and Characteristic schemes in regions of
backflow and the importance of step lengths in the x- and t-directions. The calculation
of three-dimensional steady boundary layers will be covered in Section 4.2 and results
wi;l bgdpresented for a laminar .flow over a model problem corresponding to a prolate
spheroid.
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4.1 Unsteady Boundary Layers

The laminar flow around a circular cylinder started impulsively from rest is an
excellent model problem with which to study the importance of the accuracy of the numer-
ical solutions in the presence of large backflow and to clarify the problem of singular-
ity associated with separation in unsteady flows. For this flow, the external velocity
is given by ug = sinx. Its steady-state solution has a singularity at x = xg = 1.82
= 104° and for xg < x < w it does not exist. A number of numerical studies have been
conducted for this flow, as discussed in [33], and conflicting results obtained regard-
ing separation in an evolving boundary layer in essence due to the inaccuracy of numeri-
cal procedures used by different authors. Except for those of van Dommelen and Shen
[36,37], calculations either broke down at a specific time at a certain x-station from
the stagnation point or they could not be extended to times much greater than 2. While
all previous studies on this problem were conducted by using an Eulerian coordinate sys-
tem, that of van Dommelen and Shen made use of a Lagrangian coordinate method and showed
that, for t > 2, a hump developed in the displacement thickness &§*(x,t) in the neighbor-
hood of x = 2, i.e, a 1ittle way into the reversed flow region. This evolved into a very
sharp singularity at t = 3,004, x = 1,937, My calculations utilized the Zig-Zag Box
scheme of Section 3.3 and confirmed the results of van Dommelen and Shen up to t = 2,75,
but they had to be terminated at larger times due to the numerical problems encountered
in regions of flow reversal.

The need to satisfy the CFL condition in regions of flow reversal was not considered
until recently [38]; calculations were made using the Characteristic scheme of Section
3.3, which allows the orientation of the finite-difference mesh to vary across the shear
layer and includes the procedure for the automatic selection of time steps so as to main-
tain the angle (see Fig. 3.6)

P (4.1)
Ky

The resulting values of kp for the predetermined values of steps in the x-direc-
tion are shown in Table 1 and become extremely small at v = 3.0. The total number of
increments used in calculations were 101, 161 and 435 in x, y and T, respectively, and
the calculations could have been extended beyond v = 3 but at considerable expense, as
witnessed by the small and decreasing values of k,. The values of kp and r; are
shown in Table 1.

Table 1., The distribution of step sizes in 7 and E.

T ko 11 G

0+ 1 0.05 0 + 0.54 0.02

1+ 1.5 0.02 0.54 + 0.57 0.01
1.6 > 2.3 0.01 0.57 + 0.58 0.0025
2.3+ 2.73 0.005 0.58 + 0.60 0.0020
2.73 + 3,024 0.002 0.60 + 0.612 0.0015
3.024 + 3.1 0.001 0.612 » 0.64 0.0020
0.64 + 0.67 . 0.0025

0.67 + 0.72 0.01

0.72 + 1.0 0.02

The above increments were subsequently used in conjunction with the Zig-Zag scheme, which
had previously failed to permit calculations for times greater than t > 2.75. The
results were found to be identical to those presented here. The alternative approach of
using the Zig-Zag scheme and the relatfonship given by Eq. (4.1) was not, however, suc-
cessful. This confirms that the selection of k, must depend upon the direction of the
local streamlines.

Figures 4.1, 4,2 and 4.3 display the variations of dimensionless displacement thick-
ness, A*, local skin-friction coefficient c¥ and dimensionless displacement velocity
Vyl= vy/ug = d/ds (ugd*)]. It is of particular note that the displacement thickness is
close to monotonic with the small maximum and minimum for t = 3.1 at which the calcu-
lations were terminated. The Zig-Zag Box results are also shown in the figure and reveal
the maxima which stemmed from the use of a numerical scheme which did not meet the
requirements imposed by the CFL condition.

The distributions of local skin-friction coefficients of Fig. 4.2 show trends which are
similar to those of the previous results but with differences in magnitude consistent
with those of Fig. 4.1, It should be noted that the results of Figs. 4.1 and 4.2 are
identical with those obtained with the Zig-Zag scheme up to the value of @ at which the
displacement thickness gradient reaches its maximum and for values of <t less than
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Figure 4.3. Varjation of displacement velocity for the impulsively started circular
cylinder, The insert shows the variation of the location of maximum dis-
placement velocity o, with solid circles indicating the computed values,
the dashed 1lines indicate the 1linear extrapolation of 6, and the solid
line a conjectured varjation of 6, to steady state, Cebeci [?8].

around 2.75, The differences for large values of © and vt are associated with the
numerical procedure and, in particular, with its ability to satisfy the CFL condition as
discussed previously.

The dimensionless displacement velocity, V@, is shown in Fig. 4.3 together with
the locus of points corresponding to its maxima which increases with time and decreasing
angle. At 1t = 3,0, the calculated value of & is 111.5 and corresponds very closely
to that determined by van Dommelen and Shen who terminated their calculations at this
time. As the peak in the displacement velocity moves upstream with increasing time, the
location at which the skin-friction coefficient becomes zero also moves upstream but at a
slower rate and towards its steady-state value of 105° [4]. Figure 4.3 also shows that
it is desirable to perform calculations at higher values of 1 so as to confirm the
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conjecture that the only singularity is associated with the steady-state solution. To

make a conclusive judgment, calculations should be performed up to t = 4.1 but, as
Table 1 suggests, the required time steps are 1likely to be very small. The time
required to obtain results in the range Tt = 3,024 to 3.1, which corresponds to 75

time-steps, was 7 hours on a CYBER 175, The computer time 1ikely to be required to
reach t = 4.1 is clearly excessive,

It is clear that the characteristic box scheme has successfully permitted the calc-
ulation of the flow properties for the unsteady flow associated with a cylinder impul-
sively started from rest. The large reverse flow regions found with this model problem
occur in the more practical application of oscillating airfoils as we shall see in Sec-
tion 5.0. In particular, the use of the Characteristic Box scheme together with Eq.
(4.1) leads to solutions which approach and pass the region of the singularity without
numerical difficulty whereas the Zig-Zag scheme leads to solutions which oscillate and
break down in the same manner experienced with the cylinder.

4,2 Three-Dimensional Boundary Layers

The CFL condition must also be satisfied in the calculation of steady three-
dimensional flows with cross-flow reversal as discussed in Section 3.1. The need to
satisfy this condition and the consequences of not doing so will now be demonstrated for
a prolate spheroid which is a convenient shape for which to perform boundary-layer calc-
ulations since analytical expressions are available for inviscid pressure distribution
and computer calculations are not required to determine the inviscid flow. Furthermore,
the flow properties become complex as the angle of incidence is increased beyond fully-
attached flow and the numerical calculations for this body serve as an excellent test
case to develop and evaluate numerical methods for three-dimensional flows and investi-
gate the properties and the behavior of the solutions in regions of negative cross-flow
and in regions near separation.

The equation of a prolate spheroid can be written as (see Fig. 4.4),
-2

2 r .
+ ) =1 (4.2)

(%)

and the geometric parameters and the inviscid velocity distribution can be obtained from
analytical expressions as described, for example, in [12,39]. The initial conditions in
the (x,y) plane consist of the attachment-l1ine equations, which can be easily solved away
from the nose, but troubles arise in the nose region due to singularities in the geomet-
rical parameters. They can be removed by suitable transformations and the calculations,
which originate at S,, can be performed on both windward and leeward lines of symmetry
as well as in the circumferential direction where now z = ¢. Thus, with initial con-
ditions in the (y,$) plane, say at x = x5, and with initial conditions in the (x,y)
plane at ¢ = 0 and ¢ = mw, the bouné%ry-1ayer equations can be solved by the
numerical procedures of Section 3 for the prescribed inviscid velocity distribution and
with specified thickness ratio t(=b/a) and angle of incidence a,

i 1//— : f“ﬂ 1 X
A\:‘F _’*;/

(]

Figure 4.4 Notation for prolate spheroid at incidence: 2, and 2, denote windward and
leeward sides,

Wang [40], Patel and Baek [41] and Cebeci et al. [39] have reported calculations for
this flow and in the last case the Box method was used. At a specified x-station, the
calculations were started on the windward 1ine of symmetry and marched in the circumfer-
ential direction with equal A¢ increments of 2.5°. When the calculations broke down
at some ¢-location, the procedure was repeated, this time starting on the leeward line
of symmetry and marching' towards the windward 1ine of symmetry. The grid in both direc-
tions was assigned a priori and two separate numerical methods corresponding to the Zig-
Zag and Characteristic Box schemes were used, With the former scheme, there is no
implicit procedure with which to determine whether or not the CFL criterion is satisfied.
The Characteristic Box scheme does allow the CFL criterion to be assigned, as was dis-
cussed in the previous section, but the calculations of [39] did not make use of this
possibility.

Figure 4.5 shows the separation lines and the line on which the circumferential
skin-friction coefficient cg, is zero for t = 1/4 and '« = 6°, as computed by Cebeci et
al. [39]. 1In the region ups%ream of the zero-cg, -1ine (Region A) all u and w velocities
are positive, 1in the region between the zero-ck,-line and the two separation 1lines
(Region B)u is positive but w is negative near t ¢ surface. Downstream of the separation
1ines (Region C) both u and w are negative near the surface and positive away from the
surface. The boundary-layer calculations in regions A and B can be performed for a pre-
scribed pressure distribution because the flow is not separated. The calculations can
be performed with initial conditions started on either line of symmetry. They can also
be performed by first computing the region 0 < ¢ < ¢, with inftial conditions started on
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Figure 4.5. Separation 11nes and the zero Cf¢-1ine for laminar flow on a prolate spher-

oid at o = [39].

the windward 1ine of symmetry and the remaining region ¢o < ¢ < m with initial conditions
started on the leeward T1ine of symmetry. Each procedure’has its own advantages but if
the numerical method is accurate, the results will not depend on a preferred direction
of marching.

The numerical solution of the boundary-layer equations for Region A is straightfor-
ward and can be obtained easily with the Standard Box scheme of Section 3.2 with initial
conditions computed on the windward Tine of symmetry. In Region B, a method that
accounts for negative cross-flow velocity is needed and the Characteristic Box scheme of
Section 3.3 can be used for this purpose. However, the calculations in this case must
be performed with care since the accuracy of the solutions depends on the choice of the
net in the circumferential and streamwise directions. To discuss this further, we shall
consider a portion of Region B denoted by xp < x < xp and present recent results obtained
by Cebeci and Su [42] who used uniform step 1engths of 2.5° in the circumferential direc-
tion as in [39] and nonuniform step lengths in the streamwise direction (see Table 2) to
investigate the role of the CFL criterion on the computed results.

Table 2. Step Lengths in the Streamwise Direction
for the Region xp < x < Xxp
GRID
AX
X I 11 I11 v v VI

0.1500 - 0.2500 0.02500
0.2500 - 0.2700 0.02000

>0.2700 0.01000
0.1500 - 0.2750 0.01250

>0,2750 0.00500
0.1600 -~ 0,2700 0.00500

>0,2700 0.00250
0.1600 - 0.2000 0.00500
0.2000 - 0,2700 0.00250

>0.2700 0.00125
0.1600 - 0.2000 0.00250
0.2000 - 0.2700 0.00125

>0.2700 0.00050
0.1600 - 0.2000 0.00250
0.2000 - 0.2700 0.00125
0.2700 - 0.2820 0.00050

>0.2820 0.00025
x > 0.2820 I 11 111 Iv v VI

Ax = 0.01000 0.00500 0.00250 0.00125 0.00050 0.00025




With initial conditions given at x = xj, the calculations were started at the next
specified x-location on the line of symmetry and were continued towards the leeward line
of symmetry with the Standard Box scheme in regions where w is positive and the Charac-
teristic Box scheme where w is negative. The results obtained with Grid I are shown in
Figures 4.6 and 4.7. Figure 4.6a shows the variation of the streamwise wall shear-
stress parameter fy, with ¢ for several values of x, and for values of x = 0.200 and
0.2225 the solutions are smooth and free of oscillations. A slight oscillation occurs
around ¢ = 125° for x = 0,250 and increases substantially, covering a range of ¢ from
120° to 135°, at x = 0.270, after which the solutions are smooth and free of wiggles.
The situation worsens for subsequent values of x < 0.310, but solutions do not break
down in spite of the oscillations covering a larger region until they become smooth
around ¢ = 135°. At x = 0.310, the wall shear becomes negative and causes the calcu-
lations to terminate. With solutions available for x < 0.310, the calculations at x =
0,310 are started on the Teeward 1ine of symmetry and are continued towards the windward
line of symmetry. Again solutions exhibit oscillations in the same neighborhood as those
which have originated from the windward line of symmetry (see Fig. 4.6b) but they do not
break down until x = 0.350,

The cause of the oscillations was investigated by computing the maximum value of the
CFL parameter B(= 8¢71/4¢, see Fig. 4.7) at each ¢-station at a given x-location. Figure
4,7 shows the results for several values of x. We note from the results in Fig. 4.7a
that 8 increases with increasing value of x, and attains a maximum value at x = 0.27
which is about 40% bigger than its maximum value at x = 0.20. It also exhibits oscilla-
tions at the same value of x as fy,. We also observe from the results in Fig, 4.7b
that, the value of the CFL parameter B increases further with increasing x and oscil-
lations worsen so that the accuracy of the solutions for values of x greater than 0,27
become increasingly suspect.

To obtain stable solutions free of oscillations, additional studies were conducted
with grids other than I. Since the solutions obtained with Grid I were acceptable up to
X = 0.270, the subsequent calculations, with the grids of Table 2, began at this value,.
Figure 4.8 shows the variation of the CFL parameter 8 for six grids in which the
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] . . W .
Figure 4.6. Variation of streamwise wall shear parameter fy with ¢.
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Figure 4.7. Variation of CFL parameter B8 with ¢,
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Ax-spacing diminishes from I to VI. We note from the results that, as expected,
decreasing Ax-spacing decreases the maxjimum va1ue of B. Figure 4.9 shows the effect
of Ax-spacing on the computed values of fw at x = 0.30 and we note from Fig. 4.8 that g
exceeds unity at this x-station with Grid I and the solutions of Fig. 4.9a oscillate as
a result. With Grid III, however, the value of B8 decreases to 0.27 and the solutions
improve considerably (F1g. 4.9a) although there are still some wiggles. When the grid
is refined further by using Grid VI, the value of B at x = 0.30 drops from 0.27 to
0.028 and the wiggles disappear, as shown in Fig. 4.9b.

Figures 4.10 and 4.11 show the variation of f& with ¢ for conditions approaching
flow separation. Figure 4.10 shows that the solutions computed with Grids V and VI are
the same at x = 0.315 and that they contain no oscillations although a rapid decrease
occurs in fy around ¢ =112.5° and is followed by a sharp increase and decrease and
another continuous increase. The results in Figure 4.11 exhibit a similar behavipr with
Grid VI; again there are no oscillations in the solutions but the dip in f, moves
towards the windward line of symmetry with increasing x with fw and finally becoOmes
negative at x = 0,32375.

The use of different gr1ds allows us to determize whether or not the CFL criterion
is satisfied, and if there is a preferred direction of marching from one line of symmetry
to another. One would expect that the solutions obtained by marching from either Tine
of symmetry must be identical if the solutions were accurate, but this was not the case
when Grid 1 was used and the reason for it was the CFL criterion. Additional calcula-
tions with the grids of Table 2 confirm this conclusion and clearly show that if the grid
is chosen so that the CFL criterion is satisfied, they break down at the same location
regardless of which line of symmetry the solutions originate. As shown in Figure 4.8 and
in Table 3 with Grid II, for example, solutions originating from the windward line of
symmetry break down at x = 0.315 but those from the leeward line of symmetry at
x = 0,325, The Tatter result is not reliable even though the maximum value of B at
X = 0.325 is around 0.6 because the solutions at previous x-stations have not satisfied
the CFL condition and allowed B to exceed unity. With Grid 1V, windward-originated solu-
tions break down at x = 0.3225 but leeward solutions at x = 0.325, Closer examination of

0.35 r

o

N

o
T

0.20 -
0.15
010+

5 1l
"

Figure 4.8, Effect of grid on the varia- Figure 4.9, Effect of grid on the variation
tion of the CFL parameter 8 of the stregmwise wall shear
with x. parameter fy with ¢ at x = 0.30.
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x = 0,315. values of x.

Table 3., Effect of Grid on the Marching Direction. Calculation Breakdown
Point at o - from Windward Side, * - from Leeward Side.

Grid : X ¢
1 4] 0.30 115°
& 0.35 107.5°
o 0 0.315 112,5°
L 0.325 110
[s} 0.315 112.5°
1 * 0.32 112.5°
v 0 0.32375 110°
L 0.325 110
v 0 0.3235 110°
& 0.3240 110°
VI 0 0.3235 110°
* 0.32375 110°

B for this grid (see Fig. 4.8) shows that the solutions obtained for previous values
of x are more accurate than those which used Grids I and II. The solutions become even
more accurate and lead to almost the same break-down location if a more refined grid,
like VI, is used, for now the two x-values are 0.3235 and 0.32375 at ¢ = 110°

5.0 APPLICATIONS: INTERACTION PROBLEM

In this section we shall discuss applications of the numerical procedures described
in Section 3.0, and especially in Section 3.4, to the interaction problem discussed in
Section 2.6. Since the development and application of calculation methods for three-
dimensional flows tends to originate from that for two-dimensional flows, but with con-
siderable delay, we shall begin by considering the application of the interactive
approach to two-dimensional flows and particularly, in Section 5.1, to the problems of
laminar, leading-edge separation [7]. The geometry corresponds to a thin ellipse with
its axis located at the center of the coordinate system [y, z)

=2 -2
‘(%) + (é) = (5.1)

at an angle of attack ¢ and in a uniform stream of speed Ux. Attention is directed to
its nose region and the ellipse s approximated locally by a "nose-fitting" parabola so
that its external velocity distribution ue can be represented by

ug E+ &,

e T U v +¢t) =
® /1 + E2

v (5.2)
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Here t denotes the thickness ratio c/b, ¢ corresponds to a reduced angle of attack,
a/t, and the parameter ¥ is the_reduced polar coordlnate %/t and is related to the ¥ and
z- goordinates of the ellipse by y + b = 1/2 bt2c2 = btcEg, and to the surface distance
X by

‘ £
x = bt? OI (1 + £2)de (5.3)

Section 5.1 also considers the calculation of flow over airfoils for a wide range
of angles of attack including stall and presents comparisons with experiment, and with
solutions obtained by a thin Navier-Stokes method.

In Section 5.2 we shall extend the two-dimensional steady flow calculations Jto
unsteady flows but restrict our attention to the leading edges of thin oscillating
airfoils with external velocity distribution given by

_ U, 1 g+ g (1 + A sinet)

Ue =u—m. (1*+ t) = (1 ; 52)]/2 (5.4)

where A denotes a parameter that needs to be specified.

The calculation of three-dimensional steady flows is discussed in Section 5.3 and
results are first presented for wings for which the interactive-viscous calculations are
performed with a strip-theory approximation to the boundary-layer equations. Next, lam-
inar flow results are presented for another model problem chosen to facilitate examina-
tion of leading-edge separation on thin wings and were obtained with the numerical pro-
cedure described briefly in Section 3.4 by solving quasi-three-dimensional boundary-layer
equations., This time the model problem corresponds to a triaxial ellipsoid given by

=2 -2 = 2

X z

(E) + ('5) + (E) =1

where X, ¥, Z denote the Cartesian coordinates and a, b, ¢ represent the lengths of the
principal axis. With the proper choice of the axis ratios a:b:ic, and the onset flow
directions, this problem represents an extension of the two-dimensional model problem
discussed in Section 5.1. The relationship of the ellipsoid to the wing becomes clearer
by observing that_the 10ngest dimension of the ellipsoid (X) is in the swept spanwise
direction and the y-axis is in the chordwise direction normal to the sweep line (see F1g.
5.1). The maximum thickness of the sections normal to the sweep line, as before, is
given .by t = ¢/b and the wing planform area 1s mab. The aspect- ratio of the wing,
with X denoting the sweep angle, is given by (4/m)(a/b) cos2\.

Figure 5.1. Orientation of the ellipsoid.

As in the case of a thin ellipse at incidence o, we can derive expressions for the
external velocity components for the nose region [28] and apply the “nose-fitting"
parabolas normal to the X-axis. With the assumption that t << 1, this Tleads to the
expressions:

HIBH - AL(X/a)1(8 + 5)(1 + £2)1/2 I
u = .04
e W21 + £2) + (x/2)282
2 = . 2 —=,.12,241/2
W, = [AH(1 + E°) + Xx/a 2(B - CE)I[H® + (xX/a)"2"] (5.5b)

w21 + £2) + (/)2

Here H = [1 - (X/a)2]11/2, 4 denotes the principal axis ratio, b/a, the parameters A, B
and C denote the maximum velocities over the ellipsoid induced by the freestream velocity
Uos in the x, y and z directions, respectively, and are given in [28]. As before, ¥, cor-
responds to a reduced angle of attack and is given by

- . crn? + (x/a) % (5.6)
° HLA%(X/a) - BH]
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We note that for an ellipse defined by Eq. (5.1), the external velocity up given
by Eq. (5.5a) is identical to that of Eq. (5.2) since, by letting a + < and keeping b
fixed, £ = 0, Vo = 1 + t. For small angles of attack cosa = 1, B = u, cosk, and B can be
thought of as an equivalent freestream velocity.

5.1 Two-Dimensional Flows

To compute the flow over an airfoil with the interactive method discussed in Sec-
tions 2.6 and 3.4, 1t is necessary at first to solve the inviscid flow equations for the
airfoil shape and angle of attack., WNith the resulting pressure distribution and speci-
fied freestream conditions, the laminar boundary-layer equations are solved next from the
stagnation point along both surfaces for a short distance. The standard boundary-layer
approach is replaced by the inverse approach and is used to calculate Taminar as well as
turbulent flows with separation, with transition location either specified or computed
by an empirical formula.

For the simple leading-edge separation problem, the calculations of Cebeci et al,
[71 were performed with the external velocity distribution given by Eq. (5.2) and suc-
cessive sweeps on the airfoil. The results showed that the laminar boundary layer near
the leading edge 'is well behaved and unseparated if Ey < Eg = 1.16, although there was
significant adverse pressure gradient. At higher values of Eg, however, separation
occurred with an associfated singularity and required the use of an interactive theory to
1ink the viscous and inviscid flows. With this interaction, solutions were obtained for
separation bubbles but reattachment occurred in a very limited range of the reduced angle
of attack. For £4 > 1.218, the calculation broke down shortly after flow reversal
occurred in the boundary layer and the subsequent studies of Stewartson, Smith and Kaups
[43] seemed to imply that a dramatic switch to another separated form of motion can
occur. Their results suggest that separated and reattached-flow solutions are not always
unique and a similar phenomenon may also be present in two-dimensional calculations at
least in the sense that a small change in the calculation may cause the reattachment
location to move in space or in time by a disproportionately large amount. These con-
jectures may also have a physical counterpart in that separation bubbles can be unstable
with a tendency to form an open region of separation.

In Fig. 5.2, we show calculated distributions of the reduced skin friction at dif-
ferent values of Eo for t = 0.1 and R(ZE 2uwsb/v) = 106 and in Fig. 5.3 we
demonstrate the failure of the iteration sequence at a slightly larger value of E5 =
1.218. It is interesting to note that these observations provide support to the notion
of a critical value of E, beyond which attached flow is impossible [44] but it should be
remembered that transition occurs in flows which have separated and causes reattachment,
as was studied by Cebeci and Schimke [8] for the experimental data of Gault [45] on an
NACA 663-018 airfoil. The data include pressure distributions and velocity profiles
in the separated-flow region which covers about 10% chord and extends from s/c = 0.62 to
0.725 for a = 0° and from s/c = 0.61 to 0.715 for a = 2° at R = 2 x 106, Note that we
now use s to denote surface distances in order to distinguish it from the chordwise
distance x used for airfoils.
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Figure 5.2. Variation of fy with & Figure 5.3. Variation of fy with number of
for various values of Eg. iterations for g slightly

greater than 1,218,

The calculations of Cebeci and Schimke were first made by computing the pressure
distribution from Halsey's conformal mapping method [2]. Since the location of transi-
tion was not known prior to the boundary-layer calculations, solutions were first
obtained for the specified inviscid pressure distribution by the standard method and by
computing transition from the empirical formula given in [13],

Ry = 1.174 {1 +

. 22,400) R2'46 (5.7)

X

Subsequent iterations were performed by the standard method from the stagnation point up
to s/c = 0.30, at which point the inverse boundary-layer calculations were started and
continued to the trafling edge. If a region of separated flow was found to exist, then
the new location of transition was determined from the formula given by Crimi and Reeves

[461
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Yy=0 108
R ' (5.8)
5s (ues*/v)§

where y,-o denotes the distance from the wall where u = 0 and subscript s denotes
separation. This process was repeated until the solutions converged.

Figures 5.4 and 5.5 show the calculated and experimental results for a = 0°. Figure
5.4 shows the computed wall-shear parameter fy for several sweeps on the airfoil, and
Figure 5.5 allows comparison of calculated and experimental velocity profiles at differ-
ent streamwise locations. From Figure 5.4 we see that the inverse calculations do not
reveal a separated regijon in sweep 1 with transition corresponding to laminar separation.
In the second sweep, however, the calculations show a small separated region with the
transition Tocation still at s/c = 0.66, indicating that Eq. {5.8) did not indicate tran-
sition during that sweep. The third set of calculations (not shown on the figure) indi-
cated a larger region of separated flow with the transition location computed by Eq.
(6.8) to be at s/c = 0.69, Table 4 presents the location of transition as a function of

1.0fr SWEEP NO. 1

Figure 5.4, Variation1og wall-shear parameter fx with number of sweeps for a = O,
Re = 2 x 100,
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Figure 5,5, Comparison of calculated (solid line) and experimental (symbols) velocity
profiles for a = 0, Rg = 2 x 106 after 15 sweeps.
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Table 4, Variation of Transition ngation for Different Sweeps

for a = 0
Sweep {s/c)r
1 0.66 (laminar separation)
2 0.66
3 0.69
4 0.68
5 0.68
6-15 0.67

sweep number and confirms that the transition location remains unchanged at s/c = 0.67
after sweep 6. Figure 5.4 also shows that the overall solution converges after about ten
sweeps, According to the results of Figure 5.5, the agreement between computed and mea-
sured velocity profiles is good, apart from the Tast streamwise station s/c = 0.724 at
which there are differences in the reattachment location,.

The calculations of Cebeci and Schimke for this angle of attack and for a = 2°
indicate that the converged solutions are very sensitive to the transition location in
the boundary-layer calculations, If the transition location is specified a short dis-
tance upstream of the laminar separation point, the size of the separation bubble is
reduced or eliminated entirely. However, if the transition location is specified a short
distance downstream of this point, as in the model problem discussed above, the separated
region grows with each sweep and the solutions eventually break down,

The method discussed in this section has also been used to calculate the 1ift and
drag characteristics of several airfoils for a wide range of angles of attack including
stall [10]. The calculations include both wall boundary layer and wake flows and are
presented in the following paragraphs in a sequence which corresponds to the complexity
of the flow. Thus, the first results are presented for a symmetrical airfoil, NACA 0012,
at angles of attack up to and including stall. The second airfoil, NACA 4412, has camber
and the measurements again correspond to angles of attack up to and including stall.
Finally, results are presented for an aft-loaded airfoil, GA(W)-2, which is 13%-thick.
These airfoils have been investigated for angles of attack up to 16° and, since the chord
Reynolds numbers imply that transition cam play an important role and it was treated here
in the manner described previously.

Figures 5.6 and 5.7 allow a comparison between the computed and experimental [47]
1ift and drag curves for the NACA 0012 airfoil. As can be seen from Fig. 5.6, the calc-
ulated results are in very good agreement with measurements up to a = 15° and suggest
that stall occurs for a beyond 19°, whereas the experiments indicate stall for a>16°., As
shown in the figure, a very small adjustment to the location of transition results 1in
calculations of stall angle in accord with measurements. To further elaborate on this
point and to show the role of transition, Table 5 presents calculated results for three
angles of attack. Those in Table 5a were obtained for o = 6° with the transition
location computed from the empirical formula given by Eq. (5.8). As can be seen from
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Table 5. Effect of Transition on the Flo% Properties of
an NACA 0012 Airfoil for Rc = 6 x 107,

{a} a = 6°., Experimental value of cg = 0.65, Transition computed from Eq. (5.8).

&
(x/e)ey ) < t.e.
0.031 (fixed) 0.625 0.0091
0.052 (computed) 0.628 0.0089
.070 (fixed) 0.633 0.0084

0
0.078 (fixed) = -

(b) o =12°., Experimental value of cg = 1.29, Transition location corresponds to
laminar separation. (Negative va%ues of x/c indicate points on the lower surface.)

6*
(x/c)tr Cy, : (E—)t.e. (Ax/c)seg
-0,0030 (fixed) 1.270 . 0.0195 0.965 ~ TE
0.0025 (fixed) 1.283 0.0172 0.986 ~ TE

0.0083 (computed) 1.286 0.0167 0.986 ~ TE
0.0170 (fixed) = =

(c) « =17°., Experimental Value of cy = 1.42, Computed transition location cor-
responds to laminar separation.

§* '

(x/¢)yp Cy ()t e, (Ax/c)seg
-0.0173 (fixed) 1.502 0.0768 0.56 v TE
-0.00925(fixed) 1.514 0.0737 0.60 ~ TE
-0.00250(fixed) 1.573 0.0615 0.66 v TE

0.000493(computed) 1.669 0.0453 0.77 ~ TE

the values of cy and displacement thickness at the trailing edge, movement of the
transition location by 2% of chord has a negligible effect. Location of transition at
x/c = 0.078, however, leads to a breakdown in the solutions for reasons consistent with
those found by Cebeci and Schimke and discussed earlier. In an adverse pressure gradi.
ent, as in this case, it appears that transition must occur upstream of some limiting
location for solutions to exist.

The same phenomenon is evident in Table 5b, which corresponds to a = 12° and a
much higher 1ift coefficient. 1In this case, transition was assigned to the location
corresponding to laminar separation since Eq. (5.7) was inappropriate and a small adjust-
ment to the location of transition has a small effect on 1ift, although movement of tran-
sition to x/c = 0.0170 causes the solutions to break down. The results of Table 5c for
a = 17° indicate that the 1ift coefficient is strongly dependent on the location of
transition and that the extent of the region of trailing-edge separation is large and
becomes Targer as the transition location is moved upstream. Consistent with this
result, the displacement thickness at the trailing edge increases and the 1ift coeffic-
ient decreases as the transition location moves upstream.

Figure 5.7 shows calculated and measured variations of total drag coefficient versus
1ift coefficient with discrepancies which increase with angle of attack and are undoubt-
edly due in part to measurement accuracy. In addition, the accuracy of the calculations
in the wake region requires further examination of numerical uncertainties and of those
due to the neglect of normal pressure gradient,
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In the experiments of Wadcock [48] and Coles and Wadcock [49], a flying hot-wire
arrangement was used to measure the velocity characteristics of the flow around an NACA
4412 airfoil at angles of attack up to that corresponding to maximum 1ift. Figures 5.8
to 5.10 show the experimental and computed 1ift and drag curves and the pressure distri-
bution respectively, with calculated transition locations corresponding to the procedure
described earlier and to that obtained by the tripping arrangement of the experiment.
The measured and calculated values of cg are in close agreement up to &« = 12°, with those
calculated according to experimentally determined transition location in slightly better
agreement. The drag curves of Fig. 5.9, agree fairly well at low values of cg and poorly
at higher values. It should be noted, however, that the two sets of experimental data
differ by amounts larger than could be expected from their Reynolds numbers. The results
in Fig. 5.10 confirm the close agreement between the measured and calculated distribu-
tions of pressure coefficient. It is clear that the inclusion of viscous effects influ-
ences the pressure distribution ' considerably in the leading and trailing edge regions.

Figures 5.11-5.13 compare computed results for the 13% thick GA(W)-2 airfoil with
the experimental data of [50]. The pressure distribution, shown in Fig. 5.11 for a =
12° agrees well with the experimental data suggesting that the present interactive theory
provides a good prediction of the viscous effect. The 1ift curve slope of Fig. 5.12
shows that the present method gives good agreement up to an angle of attack of approxi-
mately 16°, which is better than the 10° obtained by Melnik and Brook [51] with the
GRUMFOIL program. The variation of drag with 1ift, presented in Fig. 5.13, shows that
the present method predicts the drag very well over the whole range considered.
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Figure 5.13.

In calculating the results

to be satisfactory only when the separation region was small.

Variation of cq with cy - GA(W)-2 airfoil, R¢ = 4.3 x 106,

of Figs. 5.6 to 5.13, the FLARE approximation was found

As the extent of the sep-

aration region increased, an additional iterative scheme based on the homotopy continua-

tion method was introduced at the start of the wake calculation.

Under this scheme an

~initial velocity profile at the trailing edge was defined by



U = Upaf + N (U - Upaf), n =0, 0,50, 1.0 (5.9)

and the boundary-layer solution was computed at the first point in the wake with n = 0,
Here upef corresponds to a nonseparating velocity profile constructed from the sepa-
rated velocity profile at the trailing edge. This procedure was repeated with n = 0.50
and 1.0 until the solutions converged and, since it was applied to each wake profile with
separation; it was necessary for angles of attack greater than around 15°, Attempts to
avoid the problem by approaching from lower angles of attack with smaller increments of
angle were unsuccessful,

In the course of the development of interactive methods, it is common to perform
calculations for the flow over an airfoil and to omit consideration of the wake. Figure
5.14 shows that this practice has consequences which also increase with angle of attack
and, for the NACA 0012 airfoil of the figure, are important for angles greater than
around 10 degrees.,

The predictions of the above interactive procedure were compared with those of the
thin Navier-Stokes (TNS) solutions in [6§2]. The NACA 0012 airfoil was_ considered for
this purpose and the calculations were performed at Re = 2.88 X 106 with Reynolds
stresses modeled by the algebraic eddy-viscosity formulation of Cebeci and Smith [4].
Both calculations used the same transition location. The TNS calculations made use of a
C-type grid topology with 257 x 57 node points, and with 36 points in the wake region of
the airfoil along the freestream direction. Except near the leading edge and the trail-
ing edge of the airfoil, the first grid-point off the airfoil surface was at a distance
of 0.00001L, where L 1s the chord length, and corresponded to y* in the range of 0.15
to 3.5, depending on chordwise Tlocation and angle of attack. The first grid-point
upstream of the leading edge and downstream of the trailing edges was at a distance of
0.001L and the outer boundary was located 10 chord lengths from the airfoil.

The interactive boundary-layer (IBL) calculations were performed with approximately
80 and 60 x-stations on the upper and lower surfaces, respectively. The number of
y-stations varied from 37 to 50 for small angles of attack, and was equal to 70 for large
angles of attack. There were 30 x-stations in the wake, which extended to three chord
lengths downstream of the trailing edge.
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Figure 5.14, Effect of wake on the (a) separation_region, and (b) displacement
thickness - NACA 0012 airfoil, Re = 6 x 106,

The calculated and measured values of 1ift coefficient, Chs shown on Figure 5.15 as
a function of angle of attack, are in close agreement up to 12° and the expected fall off
in ¢y occurs in the IBL solutions but not in the TNS solutions. With very small
changes in transition location, as was discussed previously, the IBL-computed 1ift coef-
ficient changes significantly and the TNS solution is less sensitive. There are several
possible reasons for the differences but is evident that better modeling of the wake is
required to compute the expected fall off in cg with the TNS method.

Distributions of pressure coefficient are shown on Figs. 5.16-5.18, Figures 5.16
and §.17 present the TNS and IBL results, respectively, with the experimental data of
[53] for angles of attack of 0 to 16° and Fig. 5.18 compares the results of the two pro-
cedures for angles of attack 10° and 12°, The calculated results of the two procedures
agree very well with each other as well and with the experimental data except at 14° and
16° where the TNS results show some irregularities near the suction peak due to an
improper transition location [54]. .

The drag results of Table 6 and Figure 5.19 require more detailed discussion. The
IBL approach has used the velocity defect in the wake to compute the drag coefficient,
cq, whereas the TNS procedure has integrated forces around the airfoil surface. The
pressure drag ranges from about 13 to 86% of the total drag, for angles of attack from O
to 16°, It is likely that the pressure drag integrated using surface pressure distribu-
tion is determined with acceptable accuracy, especially in view of the quality of the
calculations suggested by the comparisons between computed and experimental pressure
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Figure 5.19. Drag characteristic of the NACA 0012 airfoil at R = 2.88 x 106,

Table 6. Lift and Drag Coefficients fo% the NACA 0012 Airfoil

at Re = 2.889 x 10

JZg ‘2 : Cd
EXP. IBL TNS EXP. 18L TNS

0 0.025 0.0 : 0.0 0.0069 0.00596 0.00568
2 0.220 0.209 0.213 0.0073 0.00611 0.00572
4 0.440 0.421 0.430 0.0080 0.00633 0.00750
6 0.650 .0.639 0.641 0.0094 0.00689 0.00921
8 0.850 0.873 0.857 0.0112 0.00899 0.01207
10 1.055 1.077 1.065 0.0134 0.01070 0.01547
12 1.240 1.256 1.265 0.0180 0.01294 0.01962
14 1.400 1.422 1.457 0.0244 0.01662 0.02469
16 1.490 1.545 1.640 '0.0338 0;02315 0.03121
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coefficients discussed earlier. At angles of attack from zero to 2°, and transition
specified at the experimental location, the total drag computed by the IBL methad is
within six counts {ten thousandths) of that computed by the TNS method and both methods
agree well with the experimental values. At higher angles of attack, before the appear-
ance of the transitional bubble, the computed results of the IBL method are Tower than
those determined by experiments and the TNS method. At still higher angles of attack,
in the presence of this bubble and, with turbulent flow separation, still lower pressure
coefficients exist along the aft region of the upper surface and are underpredicted by
the IBL method. This difference is probably due to the wake-curvature and the cross-
stream pressure gradient effects which are not represented by this approach. The cross-
stream pressure gradient increases the momentum thickness of the wake and consequently
the total drag. This conjecture is consistent with the findings of [16], which examined
the use of the Cebeci-Smith eddy viscosity formulation for wake flows.

Further examination of the calculated values of cq showed that they are different
from those reported by Loftin and Smith [55] for R = 3 x 106 and almost the same value
as those in [53] (Fig. 5.19). Since the NPL data are 25 years newer than those of [55],
they are probably more accurate. The TNS procedure appears to do a better job of pre-
dicting drag than the IBL procedure, which underpredicts it at high angles of attack.
However, it is evident that the uncertainties associated with the calculation procedures
and with measurement of cq4 require further examination.

5.2 Two-Dimensional Unsteady Flows

We now present results for a model oscillating airfoil whose external velocity dis-
tribution is given by Eq. (5.4). One part of the calculations was carried out for the
standard problem by choosing £5 = 1, A = -1/2 and w = 0,1 [56]. With these choi-
ces, the maximum value of aeff, defined by

vaff = Eoll + A sinut) (5.10)

is sufficient to provoke separation with a strong singularity if the boundary layer were
steady. Numerical calculations were made initially with the Zig-Zag box scheme and the
results of Fig. 5.20 show that the boundary layer eventually separates, the flow remain-
ing smooth, Immediately downstream of separation, however, it is evident that a singu-
larity appears to develop in the neighborhood of § = 2.12 and wt = 308.75° and that
it is not possible to continue the calculation beyond this time with the standard formu-
lation and the Zig-Zag scheme.

Figure 5.20a shows that the variation of the displacement thickness
S8ty 1
LA a { T ) €m (5.11)

is generally smooth except in the neighborhood of E = 2,12 and for wt = 308.75°. The
first sign of irregularity is the steepening of the slope of &* when wt = 300° and the
Tocal maximum of 8% at £ = 2,12 when wt = 308.75°, When the same results are plotted for
a displacement velocity (Uad*), (Fig. 5.20b), we observe that the steepening of the dis-
placement velocity near § = 2,12 1{s dramatic. For example the peak is at £ = 2.125 for
wt = 300°; at E = 2.105 for wt = 305°; at £ = 2.09 for wt = 307.5°; and finally at

30Tt (deg) = 308.75

1 .
15 2.0 25 3.0

0]
Figure 5.20. Computed results for the oscillating airfoil, A_= -1/2, @ = 0.1 using
(b)

the Zig-Zag scheme. (a) Displacement thickness §, Displacement

velocity, d/dg(Uad*), (c) Wall shear parameter fu.
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tE = 2,08 for wt = 308.75°. It should be noted that the maximum value of displacement
velocity moves towards the separation point with increasing wt as we observed previ-
ously with the circular cylinder.

As shown in Fig. 5.20c, the wall shear parameter f; shows no signs of irregu-

larity fgr wt < 308.75° but a deep minimum in fﬁ occurs near & = 2.15, 1i.e. near the
peak of &%,

These results suggest that the solutions have a singularity in the neighborhood of
§ = 2.12 and wt = 308,75° and that, as 1in steady flows, Tt is necessary to use an
interactive theory to remove it. The procedure of Section 2.6 was used to investigate
this possibility further for a specific value of Ry (=105). The standard method
was used to compute the unsteady boundary layers up to § = 0.5 for all time and with
these initial conditions and for each value of wt, the inverse method was used to
calculate the unsteady flow from § = 0.5 to § = 5.5. As before, up to three sweeps
in the E-direction were made to achieve a converged solution where flow reversal was
encountered, as happens for values of wt > 270° and § > 2,

Figure 5.21a shows, the varjation of displacement thickness &* and Fig. 5.21b the
wall shear parameter f, as a function of nondimensional distance § and time, and it is
evident that the solutions are well behaved for values of £ < 2,5. As expected, the dis-
placement thickness increases with § for all values of time and reaches a maximum around
wt = 300° as a consequence of the change in the angle of attack. In the same range of g,
the wall shear decreases for all values of wt and reaches a minimum corresponding to
the maximum in displacement thickness.

For values of & > 2.5, the solutions remain well behaved until around wt = 290°,
The general trends are in accord with expectations and there is negligible difference
between the results obtained with the standard and interactive methods for values of
wt up to the maximum for which the standard method allowed solutions. Although the
calculations were carried out for one complete cycle, the solutions had wiggles for wt
> 295° and several attempts to eliminate them by using different step sizes in time
and space as well as Reynolds number were not successful., Indeed, in some cases the
solutions broke down before the calculations completed one cycle.

Calculations were performed for the model oscillating airfoil with the Character-
istic Box, as had previously been found necessary with the circular cylinder [38]. At
first, calculations were made for the standard problem with the same net spacing used in
the Zig-Zag scheme and the solutions broke down at & = 2,12 and wt = 305° when the
CFL condition given by Eq. (4.1) was not satisfied. As in the case of the circular cyl-
inder problem, the original E-distributfon was maintained and the value of k, was
reduced until the CFL condition was met and the resulting calculations were performed
smoothly and without numerical problems for one complete cycle. More important, however,
the solutions did not break down at wt = 308.75° when the same calculations were
repeated with the Zig-Zag scheme, and we were able to obtain them for one cycle. These
results were also identical to those obtained with the characteristic box scheme indi-
cating that with the "proper" net the predictions of both schemes are the same.

Figures 5.22 and 5.23 show the variation of displacement thickness &* and wall
shear parameter fy, respectively. As expected, the new results are the same up to
the location of flow reversal as those in Figs. 5.20a and 5.20c, but substantially dif-
ferent in the region of flow reversal, '

0.05 B
6 a wt MW

ot (deg) = 290 0 3 > 4 5
5 \\_,/E
285
4 -0.05}
> ot (deg) = 28
3 4 270
.10t
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t (deg) = 27
2f 2§ ; ] o\ heditia o
H L 2% S —— 4
0.5 \ % o
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2 3 ¢ 4 5 =01 T
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Figure 5.21. Effect of interaction on the variation of (a) displacement thickness &%,
(b) wall shear parameter fy for an oscillating airfoil with ¢ = 4.5
x 10-3. Solid 1ines in the insert represent the results obtained by the
Standard method and dashed 1ines those by the inverse method. Calculations
made use of the Zig-Zag Box scheme.
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Figure 5.22. Computed displacement thick- Figure 5.23., Computed wall shear parameter
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airfoil, A = -1/2 w = 0.1 airfoil, A = -1/2, w = 0.1
using the Characteristic Box using the Characteristic Box
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Calculations were also conducted using the unsteady interactive method for the net
determined in the standard problem by the characteristic scheme. The results obtained
with the Zig-Zag scheme are shown in Figs. 5.24 and 5.25 for Reynolds numbers, RLs of
105 and 10%. The results obtained by the interactive method are nearly the same as
those obtained by the standard method prior to flow reversal and are substantfally dif-
ferent when flow reversal is present by an amount which increases as the Reynolds number
decreases. We also note that the wiggles observed in the calculations with the "wrong"
net are absent, and that the rate of convergence is the same as in the standard problem.

5.3 Three-Dimensional Flows

Except for the studies of Yoshihara and his associates [57-59] and Cebeci and his
associates [28,60,61], most interactive studies for three-dimensional flows have been
conducted by direct boundary-layer methods. For a given pressure distribution, boundary-
layer solutions are obtained up to the separation line, determined either by a sudden
increase in shape factor (integral method) or by the vanishing of the wall shear stress
in the streamwise direction (differential method). These signals for separation do not
correspond to a true definition of flow separation but are chosen because of the limita-
tions of the direct boundary-layer method and of the numerical procedure. Ad hoc assump-
tions are made in the separated region so that the displacement thickness distribution
computed by the boundary-layer method can be added to the basic wing shape in the surface
normal direction, This technique was chosen by Yoshihara and Wai [59], Street [62] and
by Chow et al. [63] for transonic flow in preference to using surface transpiration
boundary conditions because it was easier to incorporate in their transonic codes. A1l
studies show the expected strong influence of viscosity on the location of the shock wave
and on the pressure distribution; the interaction schemes, however, break down in regions
of flow separation and the effect of assumed displacement thickness distribution on the
results is not clear. .

The application of interactive methods to three-dimensional flows with separation
has not received the considerable attention assigned to two-dimensional flows. Recently
Cebeci and his associates explored the merits of their interactive scheme applied in a
strip theory sense to wings at subsonic [60,64] and transonic [61] flow conditions.
Figures 5.26 and 5.27 show the results for subsonic flows. As can be seen from Figure
5.26, the computed results agree well with experiment as long as flow on the wing is not
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Figure 5.24. Interactive solutions of (a) displacement thickness 3*, and (b) wall shear
parameter fy, for the oscillating air‘foi'l5 A=-1/2, w = 0.1 obtained with
the Characteristic Box scheme for Ry = 10
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Figure 5.25. Interactive solutions of (a)} displacement thickness 8* and (b) wall shear
parameter fy, for the oscillating airfoil, A = -1/2, w = 0.1 obtained
with the characteristic box scheme for R = 104,
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Figure 5.26. Calculated and experimental Figure 5.27. Effect of transition location
1ift coefficient for a on the separation pattern of a
tapered wing. tapered wing at a = 17.5°.

"too" three dimensional, which is the case at small and moderate angles of attack when
the flow separation is small. At higher angles of attack, and starting around a ~
12°, however, the computed results begin to deviate from the experimental results and the
discrepancy may be attributed to several causes.

The first is the use of the strip theory approximation to account for viscous
effects: at the higher angle of attack, the flow becomes increasingly three-dimensional
and the viscous effects computed by a two-dimensional procedure are insufficiently repre-
sentative. The second reason is the use of a two-dimensional method to compute transi-
tion: the results of Figure 5.27 show that the computed transition location for a =
17.5°, is close to 1% chord but its location at 5% chord causes significant changes in
the flow separation pattern, especially near the tip, and decreases the total 1ift by 5%,

The third, and perhaps the most important reason, is the wake effect. The calcula-
tions for Figures 5.26 and 5.28 extended only to the trailing edge and, although this may
be acceptable at small angles of attack, it is not acceptable at higher angles of attack.

Recently the interactive approach described in Section 5.1 for two-dimensional flows
has been extended to three-dimensional flows [28] by a quasi-three-dimensional flow
approximation which is a significant improvement over the strip-~theory approximation
discussed above. We shall now present results obtained with this procedure to study the
separation and reattachment on the leading edge of a model problem corresponding to a
thin wing discussed earlier. The results are presented here for two sweep angles with a
range of angles of attack and the corresponding flows include some with separation.

Results obtained with the sweep angle of A = 20° are shown in Fig, 5.28 for a
range of reduced angles of attack from 1.306 to 1.319, As can be seen from Fig. 5.28a,
the streamwise wall shear parameter f, becomes negative with a value of gy =
1,312, The calculations proceed smoothly until ¥, = 1,323 is reached at which value
they change substantially with the number of sweeps as shown in Fig. 5.28b. Up to this
angle of attack, the region of separated flow is small and did not change much with each
sweep although the rate of convergence of the solutions at a given E-location was
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slow. Further work is 1in progress to accelerate the rate of convergence and to
investigate the reasons for the sudden increase of the separation regidn of Fig. 5.28b.

The distributions of spanwise wall shear parameter g; are shown in Fig, 5.28c¢c
and, although they exhibit a sign change, they are well behaved in the range of angles
of attack of Fig. 5.28a. Since the two momentum equations are coupled, the problems
encountered for &, = 1.323 and shown in Fig. 5.26b for fw were also present in
Gy « The displacement thickness variations of Fig. 5.28d exhibit the features of
ffows with separation so, for example, the displacement thickness varies rapidly with
angle of attack.

It is likely that the problem associated with high angle of attack is similar to
that explored for two-dimensional flows discussed in Section 5.1. The influence of sweep
angle is, however, important since the present critical angle of attack is much higher
than that for two-dimensional flows. To explore this influence further, calculations
were also performed for a sweep angle of A = 30°. The results shown in Figures 5,29
confirm the dependence of the critical angle of attack on sweep angle.

The above calculations for the model problem were performed for a given inviscid
pressure distribution with successive boundary-layer sWweeps on the body. As in the two-
gimensiona1 model problem discussed in Section 5.1, the blowing velocity can be computed

rom

_ 1 3 . -9 A
Vo = HTFE—ETﬁg [ax (ueh2 s1n96;) +'33 (weh1 s1n96;)] (5.12)
where
= u ° W
§k = [ (1 - )y, 8¢ = [ (1 - -)dy (5.13)
0 e 0 e

bu; was not fed back into the inviscid flow to obtain a modified inviscid pressure dis-
tribution., This possible improvement can readily be incorporated so that several cycles
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Figure 5.30. Interactive solution procedure,

between inviscid and viscous_ flow calculations can be performed to obtain a converged
solution, as discussed in [65].

The use of a quasi- or full-three-dimensional interactive boundary-layer scheme
involves considerable work and/or changes in the manner in which inviscid and viscous
flow calculations are performed. Unlike two-dimensional flows, we now need to compute
the geometric properties of the coordinate system, namely the metric coefficients and
geodesic curvatures appearing 1in the boundary-layer equations, The wuse of this
interactive procedure suggests the following sequence of events in the calculations, as
shown in Figure 5.30.

The inviscid method first computes the external velocity distribution around the
body without viscous effects and transfers it to the interface program which rearranges
the data from the inviscid computation to the form needed for the viscous flow calcula-
tions and computes the geometric properties of the coordinate system. After the
boundary-layer calculations, the blowing velocity can be fed into the inviscid method to
start a new cycle.

This strategy of computing three-dimensional flow fields employing the quasi-three-
dimensional interactive boundary-layer method and a subsonic surface panel method with
interface program, is being investigated by the author and his associates. The results
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Figure 5.31. Computed results for the F-15 wing [65].

indicate that turbulent flows with considerable separation can be calculated for a wide
range of angles of attack, as discussed in [65]. Figure 5.31 shows a sample of calcula-
tions performed for the F-15 wing with leading-edge separation and, as can be seen, the
computed results with this procedure are slightly better than those obtained with the
strip-theory procedure. Considering that inviscid calculations on the fuselage are not
corrected for viscous effects, the agreement with experiment is satisfactory.

6.0 CONCLUDING REMARKS

It is evident that calculation procedures for two-dimensional flows can be used to
provide accurate information of aerodynamic properties for angles of attack up to and
including stall. Interaction between solutions of viscous- and inviscid-flow equations
is necessary and the wake should form part of the solution domain for angles of attack
greater than around 10 degrees. There is, however, an urgent need for a procedure to
represent accurately the onset of transition, particularly for flows involving flow sep-
aration at high angles of attack.

The status of calculation procedures for three-dimensional flows is less satisfac-
tory. It has been shown that the CFL stability criterion must be satisfied in the solu-
tion of boundary-layer equations and that interaction and consideration of the wake are
again 1ikely to be necessary as the .angle of attack is increased. The formulation, test-
ing and use of an appropriate interaction procedure is required and, although the work
pérformed in relation to two-dimensional flows provides essential gquidelines, much
remains to be done. The problems associated with the specification of transitin in two-
dimensional flows are 1ikely to be at least as severe in three-dimensional flows and
effort is also required to improve the accuracy and efficiency of numerical methods for
three-dimensional equations.
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PROGRESS IN
VISCOUS-INVISCID SOLVERS (VIS)

J.C. LE BALLEUR

ONERA - BP 72 - 92322 Chatillon Cedex (France)

I- SUMMARY :

The aim of these lectures was an introduction to the further extensions of boundary layer
theory which rely on the development of full viscous-inviscid interaction solvers, in three-
dimensional flows.

At the present time, however, the state of the art still does not allow to handle the full 3D-
problem. It is more or less restricted, on one hand, to advances in uncoupled 3D-boundary layer
problems [3,4], direct or inverse, and, on the other hand, to developments in full viscous-inviscid
solvers for the 2D or quasi-3D infinite swept wings flows [1,2], the latter developments involving
the coupling and the calculation of quasi-3D "closed” separations.

The present lectures were mainly devoted to the developments obtained by the author and
his colleagues in these two areas. These developments were outlined after describing shortly the
_different strategies which can be used to split the Navier-Stokes problem into a viscous-inviscid
interaction problem, in two or three dimension.

The detailed content of these lectures can be found in four written publications, available in
references 1 to 4].

The progress in uncoupled 3D-boundary layer problems includes the modelling of the 3D
turbulent -mean velocity profiles in attached or separated layers, with possibly reverse flows in
streamwise direction and very high shape parameters. This modelling provides also a generalised
entrainment closure for 3D integral equations.

The progress includes also the space-marching integration-scheme used to solve the
spatially-hyperbolic boundary layers equations on arbitrary grids at the surface of the bodies. Such
arbitrary grids are specified in order to satisfy the constraints of the geometry and of the inviscid
solver, but are not well behaved with respect to the local characteristic cones of dependance of the
boundary layer problem. A Multi-Zonal and Multi-Marching "MZM” method has then been
developed to perform the numerical integration, starting at the stagnation point, and giving access to
both sides of the open-separation lines, for ellipsoids, fuselages or slender-bodies, at incidence and
yaw conditions. In case of wings, the "MZM?” method allows to compute without approximation the
leading-edge 3D-boundary layer.

The progress in full Viscous-Inviscid Solvers (VIS) includes first the numerical algorithms
for coupling in two dimensional flows [1,2]. Theoretical work has made it possible to control the
numerical stability of the "Direct” and "Inverse” coupling methods, and to define the "Semi-Inverse”
coupling method, for steady separated flows. These methods are explicit, overrelaxation like, free of
any adjustable or empirical parameter, and have been extented to the infinite swept wings (quasi-
3D) separated flows [2]. The theory is also shortly summarized [1] for the recent "Semi-Implicit”
method, which is presently used for time-consistent solutions, and which is different from
Veldman’s "Quasi-Simultaneous” method.

The progress in full Viscous-Inviscid solvers includes on the other hand the capabilities
which have been developed in the steady case, to compute separated flows over airfoils and spoilers,
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massive separation up and beyond stall, infinite swept wings, supersonic or transonic shockwave-
boundary layer interactions with separation, and choked internal separated flows. The capability of
the VIS solvers is also extended now to unsteady transonic separation over oscillating airfoils, and to
the calculation of self-induced unsteadiness in buffeting separations.

II - OUTLINE :

I'- SPLITTING - THIN LAYERS EQUATIONS - INTEGRATION SCHEMES

a) Boundary Layer Theory (Weak Coupling)

Patching {Interactive Boundary Layer Theory, Crocco 1952,
Zonal Navier-Stokes)

Matching
Defect Formulation (Le Balleur,1980)

b) Approximate Defect Eq. — Defect Integral Eq.
— 3D-Turbulent Velocity Profiles Closure

¢) Uncoupled viscous problem — Direct, Inverse ,Semi-Coupled

— "MZM” multi-marching 3D -Integration (Le Balleur, Lazareff, 1984)

2 - COUPLING ALGORITHMS (2D, Quasi-3D )

a) Direct

Inverse Explicit, Stability Control, 1978

Semi-Inverse [Le Balleur, 1978
| Carter, 1979

Cebeci Iterative Marching
Gauss-Seidel

b) Quasi-Simultaneous{ Veldman (1980)

¢) Semi-Implicit { Le Balleur, Girodroux, 1984

d) 3D-Separation : Objectives - Strategies
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’ 1 I~
(34) o - gl =wild - ) )
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COMPUTATION OF TIP AND CORNER REGION FLOWS

T.R. Govindam and H. McDonald
Scientific Research Associates, Inc.
P.0.B. 498, Glastonbury, Comnecticut 06033
USA

Summary

The flow field in cormer and tip regions of wings and propellers is
complex, three~dimensional, and viscous with large secondary/transverse
velocities. The large secondary velocities, usually associated with streamwise
vorticity development in the flow, preclude the use of conventional
boundary~layer solution techniques to compute such flow fields. On the other
hand, solution techniques for the full Navier-Stokes equations that adequately
resolve the length scales of tip and corner region flow fields would require
formidable computer resources for use routinely. Sets of approximate
three~dimensional viscous flow equations which are applicable to tip and corner
region flow fields and which can be solved economically are sought. Clearly,
economy of solution wmust result from approximations to the governing equations
for such procedures to be attractive. A spatial marching computation procedure
that solves approximate three~dimensional viscous flow equations economically is
presented here and application of the procedure to compute tip and corner region
flow fields discussed.

Spatial marching computation procedures for three—~dimensional equations
achieve economy of solution by solving the three-~dimensional equations on
transverse surfaces one at a time, from given initial conditions, along a chosen
coordinate direction (marching direction). The equations being solved must bhe a
well-posed initial value problem along the marching direction for the procedure
to be applicable. The steady Navier—Stokes equations are elliptic-~like and not
amenable to a spatial marching procedure of the type described. Approximations
need to be introduced in the Navier-Stokes equations to obtain a well-posed
initial value problem along a chosen coordinate direction. The validity of the
approximations determines the class of flow problems for which a spatial

marching computation procedure is suitable., Conventional three-dimensional
boundary layer approximations provide one such approximation set that are,

however, not suitable for tip and corner region flow fields.

Many three—-dimensional flows are characterized by a dominant flow direction
(streamwise direction). Streamwise viscous diffusion is small for such flows
compared to diffusion in transverse directions and can be neglected in the

momentum equations. This approximation is, however, not sufficient to convert



8-2

the steady Navier-Stokes equations into a well-posed initial value problem in
the streamwise direction. Additional physically realistic approximations need
to be introduced to achieve this goal. Two approximations are presented here,
each of which convert the steady Navier-Stokes equations (with streamwise
diffusion neglected) into well-posed initial value problems, and are termed

(a) the pressure approximation

(b) the small scalar potential approximation.

In the pressure approximation the streamwise pressure gradient in the streamwise
momentum equation is approximated and treated as known. Typically the
streamwise pressure gradient is obtained from the inviscid potential flow for
the geometry under consideration. No approximations are made for the transverse
pressure gradients in the equations and this allows a new pressure field
compatible with the computed viscous flow velocity field to be computed from the
transverse momentum equations. The streamwise pressure gradient associated with
the computed pressure field will, in general, be different from that assumed
known in the streamwise momentum equation., The difference between the two
streamwise pressure gradients represents the level of approximation made to the
Navier-Stokes equations. Details of the pressure approximation, solution
procedure, "and computed results can be found in Referemce [1].

The small scalar potential apprbximation can be considered to be a non-
trivial extension of two-dimensional slender channel theory to three-dimensional
flow with large secondary velocities. 1In this approximation convection effects
of a defined scalar potential velocity are neglected in the transverse momentum
equations. Simple order—-of-magnitude estimates can be made to show that the
neglected convection effects are small for many three-dimensional flow fields.
No approximations are introduced in the equations for the pressure gradients or
for the dominant component of the secondary velocity field. Details of the
small scalar potential approximation, solution procedure, and computed results

can be found in Reference [2].

The pressure approximation and the small scalar potential approximation
each provide a set of approximate three-dimensional viscous flow equations that
are amenable to solution by a spatial marching algorithm. Numerical procedures
employed in the solution of the equations must exploit the approximations made
to provide economy of solution (one to two orders of magnitude over an efficient
Navier—-Stokes algorithm). Further, the numerical procedures must be consistent,
stable and accurate, The approximate flow equations are solved in terms of a
set of new dependent variables; namely, the streamwise velocity, defined scalar
and vector potentials, the streamwise vorticity, and the pressure. The scalar
and vector potentials together define the transverse velocity field. The flow
equations in terms of the new dependent variables are weakly coupled sub-systems

of equations that can be solved sequentially on each transverse plane rather
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than the strongly coupled system of equations in terms of primitive variables.
This decoupling of the equations enhances economy of the solution algorithm.
Efficient, stable and accurate numerical procedures are used to solve each
sub-system of equations. Details of the solution algorithm for the pressure
approximation can be found in Reference [1] and for the small scalar potential
approximation in Reference [2].

Application of the spatial marching algorithm to compute tip vortex
generation on propeller blades using the pressure approximation can be found in
Reference [3]. Computatién of the flow in the internal corner of a curved
square duct using the small scalar potential approximation can be found in
Reference [2]. These typical computations demonstrate the capability of the
procedure to compute complex three-dimensional viscous flows economically and

accurately.
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OUTLINE

e LECTURE I
CONCEPTS, REQUIREMENTS, AND GENERAL FEATURES
OF A SOLUTION ALGORITHM TO COMPUTE TIP AND

CORNER REGION FLOWS ECONOMICALLY

* LECTURE 1
DETAILS OF FORMULATION, APPROXIMATIONS, AND
NUMERICAL PROCEDURES OF THE FORWARD MARCHING

COMPUTATION PROCEDURE FOR 3-D VISCOUS FLOWS

Sclentllic

Research
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f

LECTURE | - OUTLINE

* CHARACTERISTICS OF TIP AND CORNER REGION FLOW AND
THEIR COMPUTATION

* BASIC CONCEPTS IN FORMULATING A FORWARD-MARCHING
COMPUTATION PROCEDURE

* COORDINATE SYSTEM

* . COMPUTATION OF TIP VORTEX GENERATION

Sclentific

Research
\ Assoclates

* A CLASSIFICATION OF 3-D VISCOUS FLOW COMPUTATION SCHEMES
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'EXTEND’ BOUNDARY LAYER ANALYSIS

EXTEND BOUNDARY LAYER ANALYSIS ALL THE WAY TO FULL NAVIER-STOKES

EQUATIONS. CURRENTLY TOO EXPENSIVE TO ROUTINELY SOLVE IN 3-D

INTRODUCE SUITABLE PHYSICALLY REALISTIC APPROXIMATIONS
TO NAVIER-STOKES EQUATIONS IN AN ATTEMPT TO FORMULATE

AN ECONOMICAL SOLUTION PROCEDURE

RETAIN DIFFUSION IN BOTH TRANSVERSE COORDINATES.
HENCE, NO PREFERRED TRANSVERSE DIRECTION

CAN NEGLECT STREAMWISE DIFFUSION
(NOTE: IDENTIFICATION OF A DIRECTION)

MAKE NO ATTEMPT TO IDENTIFY 'BOUNDARY LAYER' AND
'FREE STREAM'

INTRODUCE ANY ADDITIONAL SUITABLE PHYSICALLY REALISTIC
APPROXIMATIONS TO ACHIEVE GOAL OF AN
ECONOMICAL SOLUTION PROCEDURE

N

_/

-

Sclentitic

Research
Assoclates

THREE-DIMENSIONAL VISCOUS FLOW PREDICTION SCHEMES

- A CLASSIFICATION -

I. CONVENTIONAL THREE-DIMENSIONAL BOUNDARY LAYERS
SUBJECTED TO IMPOSED PRESSURE GRADIENTS.

Il. FORWARD MARCHING OF FLOW EQUATIONS WHICH
CONTAIN BOTH CROSS-SECTION STRESSES. STRESS
IN MARCHING DIRECTION NEGLECTED. ADDITIONAL
APPROXIMATIONS INTRODUCED TO ALLOW SOLUTION
BY EFFICIENT MARCHING IN SPACE.

Hl. ITERATED FORWARD MARCHING OF CATEGORY Il SYSTEM
OF EQUATIONS. GOAL IS TO REMOVE BY ITERATION
ADDITIONAL APPROXIMATIONS INTRODUCED TO ALLOW
SOLUTION BY EFFICIENT MARCHING IN SPACE.

IV. SOLUTION OF FULL THREE-DIMENSIONAL NAVIER-STOKES
EQUATIONS.

~N
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CATEGORY 1l
ITERATED FORWARD MARCHING
- BOTH CROSS-SECTION STRESSES RETAINED -
FORWARD-MARCHING DIRECTION STRESS NEGLECTED
GOAL IS TO REMOVE ADDED CATEGORY Il APPROXIMATIONS

* ATTEMPT TO DERIVE BENEFIT FROM FORWARD-MARCHING
AS IN CATEGORY 1l

®* REVERSED VELOCITIES IN MARCHING DIRECTION NOT
RIGOROUSLY PERMITTED.

* NUMBER OF GLOBAL ITERATIONS SIGNIFICANTLY LARGE.

* CENTRAL MEMORY REQUIREMENTS LESS THAN WITH FULL

NAVIER-STOKES TECHNIQUES ALTHOUGH OVERALL COMPUTER
RESOURCE REQUIREMENTS MAY BE COMPARABLE.

Sclentitic

Reseerch
stocialvs

[

CATEGORY IV
SOLVES THE FULL NAVIER-STOKES EQUATIONS

* NO FLOW APPROXIMATIONS REQUIRED OTHER THAN
TURBULENCE MODEL.

* COMPUTATIONALLY EXPENSIVE. TO REDUCE NUMERICAL
ERRORS TO TOLERABLE LEVEL MAY NOT BE FEASIBLE.
RUN TIMES ONE ORDER OR GREATER THAN ONE PASS
SPATIAL MARCHING SCHEMES.

* SOME FLUID PROBLEMS INHERENTLY ELLIPTIC.

Scleatitic

Reseerch
\ Assocleles




ORTHOGONAL REFERENCE-LINE COORDINATES

* SIMPLIFY THE FORM OF THE APPROXIMATED
GOVERNING EQUATIONS

® NOT BODY FITTED

Sclentitic

Research
stoc/alos

(

BODY FITTED COORDINATES ARE USED
TO SOLVE THE GOVERNING EQUATIONS

« NONORTHOGONAL L T
ax, ax; 9y,

X2

\
//

4 y\ \

Sclentitic

Research
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APPROXIMATIONS

* STREAMWISE DIFFUSION NEGLECTED

* STREAMWISE PRESSURE GRADIENT TREATED
AS KNOWN SOURCE TERM

(NO APPROXIMATION ON THE TRANSVERSE
PRESSURE GRADIENTS)

Sclentiflc

Research
Q:ocllhs

f

PRESENT ANALYSIS

¢ STREAMWISE MOMENTUM EQUATION
« SCALAR POTENTIAL EQUATION

¢ COUPLED VECTOR POTENTIAL AND
VORTICITY EQUATIONS

¢ ASSOCIATED PRESSURE EQUATION

Sclentiflc

Research
vsoclnlou
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CASE Il - TIP VORTEX FLOW FOR A
ROTATING STRAIGHT BLADE

BLADE THICKNESS = 1.0
BLADE CHORD = 20.0
REYNOLDS NUMBER = 1000.0
INITIAL 3 = 0.20
INCIDENCE ANGLE = 6°
ADVANCE RATIO = 1.0
GRID = 60 x 47 x 40

Sclentific
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SIDE VIEW

/ FRONT VIEW

Perspective views of the twisted blade.
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LECTURE Il - OUTLINE

* CRITERIA FOR WELL-POSED INITIAL VALUE PROBLEMS
* THE "PARABOLIZED" NAVIER-STOKES EQUATIONS

® SMALL SCALAR POTENTIAL APPROXIMATION

* SOLUTION ALGORITHM

* NUMERICAL PROCEDURES FOR SOLUTION OF
GOVERNING EQUATIONS

* BOUNDARY CONDITIONS

* COMPUTATION OF FLOW IN A CURVED SQUARE DUCT
(INTERNAL CORNER FLOW)

Sclentific

Reseerch
Qsachtvs J

4 )

SUITABILITY FOR FORWARD MARCHING
(COURANT AND HILBERT 1966, GARABEDIAN 1964)

* WRITE SYSTEM OF M GOVERNING PDE'S AS
36 L) )
A‘37+Azay *Ay 5, =8

$ IS A COLUMN VECTOR OF M DEPENDENT VARIABLES

M™™ ORDER CHARACTERISTIC EQUATION GIVEN BY
A A, + A,A, + Ajd,l =0

e SYSTEM TERMED "ELLIPTIC" IF FOR ARBITRARY REAL )"Y’ A

A, HAS IMAGINARY ROOTS ‘

* SYSTEM TERMED "NONELLIPTIC" IF FOR ARBITRARY REAL ?\.Y, A
A, HAS ONLY REAL ROOTS

z

* ONLY "NONELLIPTIC" SYSTEMS CANDIDATES FOR FORWARD MARCHING

Sclentitic

Reseerch
Qsachus J




SMALL SCALAR POTENTIAL APPROXIMATION

* CAN BE INTERPRETED AS (NON-TRIVIAL) EXTENSION OF 2-D SLENDER
CHANNEL THEORY TO 3-D FLOWS WITH LARGE SECONDARY VELOCITIES.

¢ APPROXIMATIONS BASED ON SCALAR POTENTIAL VELOCITIES ALLOW
FORMULATION OF A WELL-POSED INITIAL VALUE PROBLEM.

* NO APPROXIMATION MADE FOR THE STREAMWISE PRESSURE GRADIENT
AS IN THE PRESSURE APPROXIMATION. PRESSURE TREATED AS A
DEPENDENT VARIABLE TO BE SOLVED FOR IN THE EQUATION SET.

Sclentitic

Reseerch
vsoch tes

(

ORDER-OF-MAGNITUDE ANALYSIS (CARTESIAN CONTEXT)
* PRIMARY FLOW DIRECTION AND VELOCITY - X,U
* NEGLECT AXIAL DIFFUSION

* VECTOR DECOMPOSITION OF SECONDARY VELOCITY

a¢ AT
V=V’+V‘,=-5—y-+az
a¢ v
= W, =2 — = —
WeWorWo= 577 %y

¢ EXAMINE 3-D BOUNDARY LAYER SCALING

o ¢ =0(38%) AND y =0 (5) IS ONLY SCALING CONSISTENT
WITH EITHER Y OR Z AS NORMAL COORDINATE

* THUSV,, W, =0(5) AND V., W, =0 (1)
¢ ¢ v A 4

sclentitic ¢ ASSUMPTION: Iv’l << Ivvl

Reseerch
\ Assoclatee
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APPROXIMATIONS - SUMMARY
e NEGLECT STREAMWISE DIFFUSION

¢ PRESSURE APPROXIMATION
TREAT STREAMWISE PRESSURE GRADIENT AS KNOWN SOURCE TERM
NO APPROXIMATION ON TRANSVERSE PRESSURE GRADIENTS

OR

¢ SMALL SCALAR POTENTIAL APPROXIMATION
NEGLECT CONVECTION OF SCALAR POTENTIAL VELOCITY
IN TRANSVERSE MOMENTUM EQUATIONS

NO APPROXIMATIONS ON PRESSURE

* BOTH APPROXIMATIONS PROVIDE WELL-POSED INITIAL VALUE PROBLEMS
SUITABLE FOR SOLUTION BY A SPATIAL MARCHING ALGORITHM

Sclentitic

Reseerch
\ Assoclates J

e )
IMPLEMENTATION

* EQUATIONS IN REFERENCE LINE ORTHOGONAL SYSTEM

¢ VELOCITY DECOMPOSTION

_ P
U=u,l, +V,0 + {-V”n‘f’

Vb ® (0, v, wy)

p & -
T°Vx v = (0, Vyr W)

* CHANGE OF DEPENDENT VARIABLES
Ver Wey Vyy Wy —> 0, v, Q

* CHOICE OF DEPENDENT VARIABLES FOR EFFICIENT
SOLUTION ALGORITHM

Sclentilic

Research
vsoclalu )
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Sclentillc
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SECONDARY VORTICITY uQ,

GOVERNING EQUATIONS AND ORDER OF SOLUTION

ITERATIVE BLOCK ADI

* VECTOR SURFACE POTENTIAL ~ V;¥ = -Q
* PRESSURE EQUATION vip = - SCALAR ITERATIVE ADI
* ENERGY uE, = *- SCALAR ADI
* X MOMENTUM uu, +P, = SCALAR ADI
INTEGRAL MASS FLUX fuda = m SECANT
ITERATION
* STATE EQUATION (ALGEBRAIC)
* CONTINUITY Voo = -u, SCALAR ITERATIVE ADI
* TURBULENCE EQUATION(S) SCALAR ADI, OR LBI

\

[

Sclentific

SECANT METHOD FOR GLOBAL MASS FLUX ITERATION

MASS FLUX ERROR E IS ZERO WHEN MEAN PRESSURE pp,* ' IS "CORRECT"
LET P, DENOTE A "GUESS" FOR ph*’
GIVEN P,, SOLUTION OF X MOMENTUM GIVES NONZERO E (P,)

THE GOAL IS TO FIND P, , WHICH GIVES E,, = 0

EXPAND IN TAYLOR SERIES ABOUT Pl

JdE
Ei,i=E ¢+ ('a'f;)l (Fiyq=P) + 0P -R)

2

SET E,,, =0 AND SOLVE FOR P (NEWTON-RAPHSON)

1
JEY
Ploi=Pi- EI(EF)l
SECANT METHOD OBTAINED BY SETTING
(2E) = St Bis
ar/, P,-P
SINCE E(P) IS ESSENTIALLY LINEAR AT LOW MACH NUMBER, CONVERGENCE
OCCURS ON THIRD ITERATION

Research
vsoclalcs
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[ SIMPLIFICATION AND ANALYSIS \

. SUBTRAPT 1S‘T STEP FROM 2ND STEP (REPLACES 2ND STEP)
(0 -9")/at=D (6" - 9"

e REWRITE 1ST STEP AS:
(1-BAtD,) (4" - ¢")=AtD$" THIS FORM OF THE
ALGORITHM IS

* REWRITE 2ND STEP AS: ACTUALLY SOLVED

(1-BAtD,) (4™ -9")=¢" - ¢"

* COMBINE TO ELIMINATE (6" - ¢"):
(1-BAtD,)(1 -BAtD,) (6*°- ¢") = AtDY"

e REWRITE ORIGINAL UNSPLIT EQUATION:
(1-BAtD ) (¢"*'-¢")= AtDo"

* EXPAND FACTORS IN ADI SCHEME:
(1-BAtD ) (9**-¢") = AtD¢" - (BAt*)D,D (6°*-¢")

* SPLITTING ERROR IS 0(At2) AND DOES NOT INCREASE ORDER OF
TIME TRUNCATION ERROR. DISAPPEARS WHEN ¢*‘=¢"

Sclentitic

Resosrch 33 *
Q,J::.m ® STEADY SOLUTION HAS ¢"*'=¢"" =¢* = ¢" j

— R

LINEARIZED BLOCK IMPLICIT (LBl) SCHEMES

®* SYSTEMATIC SOLUTION PROCEDURE FOR SYSTEMS OF

¢ COUPLED NONLINEAR PDE'S

EFFICIENT STABLE NONITERATIVE SOLUTION
OF “"NONELLIPTIC" SYSTEMS

EFFICIENT RAPIDLY-CONVERGING ITERATION
FOR "ELLIPTIC" SYSTEMS

* OQUTLINE OF LBl SCHEME: A
IMPLICIT TIME-DEPENDENT FORMULATION
LOCAL TIME LINEARIZATION
BLOCK FORMULATION
CONSISTENT SPLITTING
BLOCK ADI

Sclentitic

Research
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Sclentilic

Resesrch
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SPLITTING OF THE L OPERATOR:
L=l +L +L,,

NEGLECTING L,, DOES NOT AFFECT STABILITY OR CONSISTENCY

UNSPLIT LBI SCHEME BECOMES:
[A-pat(L,+L (0" -0")=At(D" +S")

SPLIT LBI SCHEME (DOUGLAS-GUNN SPLITTING) EACH STEP IS
(A-patL,) (0" - o"):A:(D."+S:) } (m x m) BLOCK
(A-patL ) (0" -0")=A(0" - ©7) TRIDIAGONAL

COMBINED FORM (APPROXIMATE FACTORIZATION) OF LBl SCHEME
(A-BAtL )AT(A-BALL ) (@™ -0")=At(D" +S")

SPLITTING (FACTORIZATION) ERROR IS
(Ba) L AL (0 -0")

IF A"' IS SINGULAR, METHOD CANNOT BE APPLIED TO COMPLETE SYSTEM
ADD TIME DERIVATIVES AND ITERATE
PARTITION, DECOUPLE, SOLVE SEQUENTIALLY

)

(

Scisatltlc

BOUNDARY CONDITIONS

® NO SLIP CONDITIONS

STREAMWISE
a) SET STREAMWISE VELOCITY TO ZERO } MOMENTUM
EQUATION
b) SET NORMAL GRADIENT OF ¢ TO ZERO SCALAR
= NORMAL ¢-VELOCITY ZERO POTENTIAL
TANGENTIAL ¢-VELOCITY IN GENERAL NON-ZERO EQUATION
c) SET ¥ CONSTANT (ZERO) VECTOR
POTENTIAL
VORTICITY
d) COMPUTE WALL VORTICITY SUCH THAT COMPOSITE EQUATIONS

TRANSVERSE VELOCITY IS ZERO

Rssssrch
vlocluu
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